Citrus huanglongbing (HLB) has become a major disease and limiting factor of production in citrus areas that have become infected. The destruction to the affected citrus industries has resulted in a tremendous increase to support research that in return has resulted in significant information on both applied and basic knowledge concerning this important disease to the global citrus industry. Recent research indicates the relationship between citrus and the causal agent of HLB is shaped by multiple elements, in which host defense responses may also play an important role. This review is intended to provide an overview of the importance of HLB to a wider audience of plant biologists. Recent advances on host-pathogen interactions, population genetics and vectoring of the causal agent are discussed.
Citrus huanglongbing (HLB) is a destructive disease with no known cure. To identify sources of HLB resistance in the subfamily Aurantioideae to which citrus belongs, we conducted a six-year field trial under natural disease challenge conditions in an HLB endemic region. The study included 65 Citrus accessions and 33 accessions belonging to 20 other closely related genera. For each accession, eight seedling trees were evaluated. Based on quantitative polymerase chain reaction analysis of the pathogen titers and disease symptoms, eight disease-response categories were identified. We report two immune, six resistant, and 14 tolerant accessions. Resistance and tolerance observed in different accessions may be attributed to a multitude of factors, including psyllid colonization ability, absence of pathogen multiplication, transient replication of the bacterium, lack of pathogen establishment in the plant, delayed infection, or recovery from infection. Most citrus cultivars were considered susceptible: 15 citrons, lemons, and limes retained leaves in spite of the disease status. Resistance and high levels of field tolerance were observed in many noncitrus genera. Disease resistance/tolerance was observed in Australian citrus relative genera Eremocitrus and Microcitrus, which are sexually compatible with citrus and may be useful in future breeding trials to impart HLB resistance to cultivated citrus.
Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus. Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.