BackgroundMicrobial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria.ResultsWe describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes.ConclusionWe developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases.
Mammalian biological processes such as inflammation, involve regulation of hundreds of genes controlling onset and termination. MicroRNAs (miRNAs) can translationally repress target mRNAs and regulate innate immune responses. Our model system comprised primary human keratinocytes, which exhibited robust differences in inflammatory cytokine production (interleukin-6 and tumor necrosis factor-␣) following specific Toll-like receptor 2 and 4 (TLR-2/TLR-4) agonist challenge. We challenged these primary cells with Porphyromonas gingivalis (a Gram-negative bacterium that triggers TLR-2 and TLR-4) and performed miRNA expression profiling. We identified miRNA (miR)-105 as a modulator of TLR-2 protein translation in human gingival keratinocytes. There was a strong inverse correlation between cells that had high cytokine responses following TLR-2 agonist challenge and miR-105 levels. Knock-in and knock-down of miR-105 confirmed this inverse relationship. In silico analysis predicted that miR-105 had complementarity for TLR-2 mRNA, and the luciferase reporter assay verified this. Further understanding of the role of miRNA in host responses may elucidate disease susceptibility and suggest new anti-inflammatory therapeutics.
Aim-The dental plaque is comprised of numerous bacterial species which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of IL-1β, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential.Materials and Methods-HGECs were challenged with the four bacterial species, live or heatkilled, at various MOIs (multiplicity of infection) and the elicited IL-1β, IL-6, IL-8 and IL-10 responses were assayed by ELISA. Results-PrimaryHGECs challenged with live P. gingivalis produced high levels of IL-1β, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory.Conclusion-We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary human gingival epithelial cells that may reflect their individual virulence or commensal status.
Periodontitis is a common chronic inflammatory disease that is initiated by a complex microbial biofilm that poses significant health and financial burdens globally. Porphyromonas gingivalis is a predominant pathogen that maintains chronic inflammatory periodontitis. Toll-like receptors (TLRs) play an important role in periodontitis by recognizing pathogens and maintaining tissue homeostasis. Deficiencies in TLR expression and downstream signaling may reduce the host's innate defenses against pathogens, leading to bacterial persistence and exacerbated inflammation, which are now being better appreciated in disease pathologies. In the case of periodontitis, gingival epithelial cells form the first line of defense against pathogens. Innate immune dysregulation in these cells relates to severe disease pathology. We recently identified a blunted TLR2 expression in certain gingival epithelial cells expressing diminished cytokine signaling upon P. gingivalis stimulation. Upon detailed analysis of the TLR2 promoter CpG Island, we noted higher CpG methylation in this dysregulated cell type. When these cells were treated with DNA methyltransferase inhibitor, TLR2 mRNA and cytokine expression were significantly increased. If TLR2 expression plasmid was ectopically expressed in dysfunctional cells prior to P. gingivalis stimulation, the cytokine expression was increased, confirming the requirement of TLR2 in the P. gingivalis-mediated inflammatory response. We designed a chronic in vitro infection model to test if P. gingivalis can induce DNA methylation in normal gingival epithelial cells that express higher TLR2 upon agonist stimulation. Chronic treatment of normal epithelial cells with P. gingivalis introduced de novo DNA methylation within the cells. In addition, increased DNA methylation was observed in the gingiva of mice infected with P. gingivalis in a periodontitis oral gavage model. Moreover, tissues obtained from periodontitis patients also exhibited differential TLR2 promoter methylation, as revealed by bisulfite DNA sequencing. Taken together, DNA methylation of TLR2 can modulate host innate defense mechanisms that may confer increased disease susceptibility.
BackgroundThe oral pathogen Porphyromonas gingivalis has been shown to modulate apoptosis in different cell types, but its effect on epithelial cells remains unclear.ResultsWe demonstrate that primary human gingival epithelial cells (HGECs) challenged with live P. gingivalis for 24 hours exhibit apoptosis, and we characterize this by M30 epitope detection, caspase-3 activity, DNA fragmentation and Annexin-V staining. Live bacteria strongly upregulated intrinsic and extrinsic apoptotic pathways. Pro-apoptotic molecules such as caspase-3, -8, -9, Bid and Bax were upregulated after 24 hours. The anti-apoptotic Bcl-2 was also upregulated, but this was not sufficient to ensure cell survival. The main P. gingivalis proteases arginine and lysine gingipains are necessary and sufficient to induce host cell apoptosis. Thus, live P. gingivalis can invoke gingival epithelial cell apoptosis in a time and dose dependent manner with significant apoptosis occurring between 12 and 24 hours of challenge via a gingipain-dependent mechanism.ConclusionThe present study provides evidence that live, but not heat-killed, P. gingivalis can induce apoptosis after 24 hours of challenge in primary human gingival epithelial cells. Either arginine or lysine gingipains are necessary and sufficient factors in P. gingivalis elicited apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.