As more data and technologies become available, it is important that a simple method is developed for the assessment of land use changes because of the global need to understand the potential climate mitigation that could result from a reduction in deforestation and forest degradation in the tropics. Here, we determined the threshold values of vegetation types to classify land use categories in Cambodia through the analysis of phenological behaviors and the development of a robust phenology-based threshold classification (PBTC) method for the mapping and long-term monitoring of land cover changes. We accessed 2199 Landsat collections using Google Earth Engine (GEE) and applied the Enhanced Vegetation Index (EVI) and harmonic regression methods to identify phenological behaviors of land cover categories during the leaf-shedding phenology (LSP) and leaf-flushing phenology (LFS) seasons. We then generated 722 mean phenology EVI profiles for 12 major land cover categories and determined the threshold values for selected land cover categories in the mid-LSP season. The PBTC pixel-based classified map was validated using very high-resolution (VHR) imagery. We obtained a cumulative overall accuracy of more than 88% and a cumulative overall accuracy of the referenced forest cover of almost 85%. These high accuracy values suggest that the very first PBTC map can be useful for estimating the activity data, which are critically needed to assess land use changes and related carbon emissions under the Reducing Emissions from Deforestation and forest Degradation (REDD+) scheme. We found that GEE cloud-computing is an appropriate tool to use to access remote sensing big data at scale and at no cost.
Digital and scalable technologies are increasingly important for rapid and large-scale assessment and monitoring of land cover change. Until recently, little research has existed on how these technologies can be specifically applied to the monitoring of Reducing Emissions from Deforestation and Forest Degradation (REDD+) activities. Using the Google Earth Engine (GEE) cloud computing platform, we applied the recently developed phenology-based threshold classification method (PBTC) for detecting and mapping forest cover and carbon stock changes in Siem Reap province, Cambodia, between 1990 and 2018. The obtained PBTC maps were validated using Google Earth high resolution historical imagery and reference land cover maps by creating 3771 systematic 5 × 5 km spatial accuracy points. The overall cumulative accuracy of this study was 92.1% and its cumulative Kappa was 0.9, which are sufficiently high to apply the PBTC method to detect forest land cover change. Accordingly, we estimated the carbon stock changes over a 28-year period in accordance with the Good Practice Guidelines of the Intergovernmental Panel on Climate Change. We found that 322,694 ha of forest cover was lost in Siem Reap, representing an annual deforestation rate of 1.3% between 1990 and 2018. This loss of forest cover was responsible for carbon emissions of 143,729,440 MgCO2 over the same period. If REDD+ activities are implemented during the implementation period of the Paris Climate Agreement between 2020 and 2030, about 8,256,746 MgCO2 of carbon emissions could be reduced, equivalent to about USD 6-115 million annually depending on chosen carbon prices. Our case study demonstrates that the GEE and PBTC method can be used to detect and monitor forest cover change and carbon stock changes in the tropics with high accuracy.
The wetland of focus, Inle Lake, located in central Myanmar, is well known for its unique biodiversity and culture, as well as for ingenious floating garden agriculture. During the last decades, the lake area has seen extensive degradation in terms of water quality, erosion, deforestation, and biodiversity concomitant with a major shift to unsustainable land use. The study was conducted, with an emphasis on water quality, to analyze environmental impacts (effects) changing the ecosystem and to comprehensively evaluate the environmental state of the ecosystem through an innovative Rapid Cumulative Effects Assessment framework tool. The assessment started with a framework-forming Participatory Rural Appraisal (PRA), which quantified and prioritized impacts over space and time. Critically important impacts were assessed for "intra-inter interactions" using the loop analysis simulation. Water samples were analyzed while geographic information system (GIS) and remote sensing were used to identify water pollution hotspots. It was concluded that out of a plethora of impacts, pollution from municipal sources, sedimentation, and effects exerted by floating gardens had the most detrimental impacts, which cumulatively affected the entire ecosystem. The framework tool was designed in a broad sense with a reference to highly needed assessments of poorly studied wetlands where degradation is evident, but scarcely quantified, and where long-term field studies are fraught with security issues and resource unavailability (post-conflict, poor and remote regions, e.g., Afghanistan, Laos, Sudan, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.