One of the highly soluble protein presents in circulatory system of bovine body is bovine serum albumin (BSA). Bupropion hydrochloride (BRN) served to treat prime smoking cessation and disorder due to depressive. BRN binding to BSA was studied by molecular docking and lots of spectroscopic (UV-vis, emission, synchronous, 3D fluorescence, CD and FT-IR) methods at pH = 7.40. Static quenching with strong binding was obtained for BSA-BRN system by forming complex. Secondary structures, conformations and microenvironments of BSA were altered after BRN interaction. Distance between BRN and BSA was also achieved. Biologically active metal ions (Cu2+, Ca2+, Mg2+, Fe2+ and Zn2+) were also influenced on the BSA-BRN complex. Bonds of hydrogen and Van der Waals were major binding forces to stabilize BSA-BRN complex at site I (IIA) of BSA. Hence, binding of BRN to transport protein (BSA) is of prominent importance and these findings could be helpful for BRN pharmacology and potential clinical research.
The triptan drug such as eletriptan in combination with hydrochloride (ETP) is a 5-HT1 receptor agonist used to treat the migraine headache. Human serum albumin (HSA), the fundamental serum protein, executes various functions, that includes transporting and binding of many ligands. HSA binding interaction with ETP is elucidated from molecular docking in composite with fluorescence (emission, 3D and synchronous), UV-vis and FT-IR spectroscopy at 296, 304 and 312 K (pH = 7.40). ETP after interaction modified the HSA secondary structure and its micro-environments. Energy transfer and thermodynamic parameters were evaluated. Various quenching and binding constants were computed for formed ETP-HSA complex. The dominant interactive forces for ETP and HSA binding are hydrogen bonds join up with van der Waals extent possibly at site III (IB). The presence of Ca2+, Co2+, Na+, Mg2+ and Fe3+ ions significantly affected binding ability of ETP towards HSA. The essentialness of this investigation is beneficial in life sciences, medicinal chemistry, pharmaceutical industry and clinical medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.