Soybean nodulin 26 is expressed and targeted to the symbiosome membrane of nitrogen-fixing nodules, where it forms an aquaporin channel with a modest water transport rate. In this study, we show that the phosphorylation of nodulin 26 on Ser-262, which is catalyzed by a symbiosome membrane-associated calcium-dependent protein kinase, stimulates its intrinsic water transport rate. Furthermore, using a phosphospecific antibody, we have elucidated the developmental appearance and regulation of nodulin 26 phosphorylation in vivo. Although nodulin 26 protein is detected first in differentiating infected cells (16 days), phosphorylated nodulin 26 does not become pronounced until infected cell maturation (25 days). Phosphorylation is sustained at steady state levels until entry into senescence. Nodulin 26 phosphorylation is enhanced further by osmotic stresses (water deprivation and salinity). Thus, the phosphorylation of nodulin 26 coincides with the establishment of mature nitrogen-fixing symbiosomes, is regulated by osmotic stresses that induce calcium-signaling pathways, and appears to be part of the adaptive responses of infected cells to osmotic challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.