Battery models often either fail to deliver a complete picture of the physical phenomena occurring in the cell or fail to minimize computational effort. So far, the demand for a detailed internal thermal model of battery cells with a reasonable computation time has remained unanswered. This paper addresses such question introducing a multi-domain model whose accuracy makes it suitable for thermal management system development, at a lower computational cost than competing models. The approach features an equivalent circuit parameter model with chemistrybased parameters coupled with an internal heat transfer model. The internal heat transfer model includes different sections of the cell, addressing the anisotropy and the temperature-dependence of physical properties. Material properties are partly based on manufacturer's data sheet, partly taken from literature. The development software platform enables a sensible reduction of computational effort with respect to traditional modeling techniques. Results were validated against an aggressive current at different temperatures and against current profiles obtained from two different drive cycles at different ambient temperature. The model proves to be very good in terms of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.