Background Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied. Methods We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined. Results Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4 + T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3 + regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ + , IL-17 + , and GM-CSF + CD4 + T cells, while it induced CD4 + Foxp3 + regulatory T cells in splenocytes by flow cytometry. Conclusions Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells.
Lysine acetylation is one of the most abundant post-translational modifications. However, physiological roles of this modification in bacteria are largely unknown. Previous protein acetylome analysis showed that Escherichia coli adenosylmethionine synthase (MAT) undergoes acetylation in vivo, but the biological functions of this modification still need to be uncovered. In this study, MAT of E. coli was over-expressed and purified. Subsequent mass spectrometry analysis showed that 12 lysine residues of the protein were acetylated. Site-directed mutagenesis analysis was performed and the results showed that acetylated lysine residues play important roles in the enzymatic activity of MAT. Next, deacetylation assay was performed by using CobB as the deacetylase, and the results showed that CobB could deacetylate MAT in vitro. In addition, the enzymatic activities of acetylated and deacetylated MAT were compared in vitro, and results showed that acetylation led to a decrease in its enzymatic activity, which could be reversed by CobB deacetylation. Altogether, our data suggest that CobB modulates the enzymatic activity of E. coli MAT in vitro.
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Treating [Ru(PPh3)3Cl2] with the amine 2-picolylamine (Picam) ligand in a 1:1 molar ratio, the Ru(II) complex trans-Ru(PPh3)2(Picam)Cl2 (1) is obtained in methylene chloride and can be isolated as a pure solid compound. The single-crystal structure of 1 was determined by X-ray crystallography. The geometry at the Ru metal center is a distorted octahedral environment with a trans arrangement of the two chlorides. A trans effect of the bond lengths was observed within the structure. Similarly, treating [Ru(PPh3)3Cl2] with 1:1:1 molar ratios of 2-picolylamine (Picam) and 1,1′-bis(diphenylphosphine)ferrocene (DPPF) ligands yielded the Ru(II) complex trans-Ru(DPPF)(Picam)Cl2 (2). In identical conditions, the homogeneous hydrogen transfer catalytic reactivity of complexes 1 and 2 has been tested in a basic 2-propanol solution and they indicate different catalytic activity. It was discovered that monodentate and bidentate phosphine ligands of Ru(II) complexes, as well as cis- and trans-chloro configuration display different catalytic properties from our experimental data, in agreement with literature data. Based on DFT calculations, the relative molecular catalytic reactivity of all available experimental data is understood from the relative calculated molecular energy.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.