Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO) 2 ], in this study, a reversible and dynamic interaction between the biomimetic [(NO) 2 Fe(μ-SCH 2 CH 2 OH) 2 Fe(NO) 2 ] ( DNIC-1 ) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1 . On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1 . A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO) 2 ] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.
Two copper(i)-nitro complexes [Tpm3-tBuCu(NO2)] (1) and [(Ph3P)2N][Tp3-tBuCu(NO2)] (2), containing steric bulky neutral tris(3-tert-butylpyrazolyl)methane and anionic hydrotris(3-tert-butylpyrazolyl)borate ligands, have been synthesized and characterized. Complex 2 adopts a unique κ2-binding mode of Tp3-tBu around the copper(i)-nitro environment in the solid state and shows a four-coordinated tetrahedral geometry surrounded by a nitro and three pz3-tBu groups in solution. Both complexes 1 and 2 allow for the stoichiometric reduction of NO2- to NO with H+ addition. The results of this effort show that increasing steric bulk and electron donation properties on the nitrogen ancillary ligand will improve the nitrite reduction ability of the copper(i)-nitro model complexes.
Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe 2 (μ-SCH 2 CH 2 COOH) 2 (NO) 4 ] (DNIC-2) onto MIL-88B, a metal−organic framework (MOF) consisting of biocompatible Fe 3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@ tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.
Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH 3 BH 3 , AB) was considered as a chemical H 2storage and H 2 -delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/ cZIF-67_μm) were explored to promote catalytic dehydrogenation of AB and generation of H 2(g) . According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_μm), and a kinetic isotope effect value of 2.45 (or 2.64) for H 2 O/D 2 O identify the Cocatalyzed cleavage of the H−OH bond, instead of the H−BH 2 NH 3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H 2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH 3 OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO 2 -to-formate/H 2 O-to-H 2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H 2 O) 9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H 2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H 2(g) for the treatment of inflammatory diseases will be further investigated in the near future.
Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1–3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1–3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104–105 M−1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1–3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.