Internal explosion in a tunnel is a complex loading phenomenon where the tunnel lining is subjected to not only direct impact of explosion but also loading due to multiple reflection of blast waves which could be of magnitude higher than that of incident blast wave. This kind of loading is complex in nature and difficult to predict using simple analysis tools. Further, it poses a serious threat to its structural integrity. Studies have been conducted in the past to understand the behaviour of tunnel under internal explosion. However, they have been focused on straight tunnels ignoring the convex and concave shapes introduced due to horizontal and vertical curves. Shape of the target surface has significant effect on the characteristics of blast wave. This study investigates the effect of horizontal curves on the damage behaviour of tunnel lining due to internal explosion. A series of numerical simulation are performed on box-shaped tunnel with varying curvature radius and the results are compared with that of straight tunnel adopting Multi-Material Arbitrary Lagrangian-Eulerian (MM-ALE) method using LS-DYNA®. Explosive and air are modeled using ALE formulation, whereas, tunnel and soil are modeled using Lagrangian formulation. Further, Jones-Wilkins-Lee equation of state is used to model the explosion. Damage to the tunnel lining is measured in terms of peak particle velocity (PPV) and von-Mises stress. It is observed that walls of curved tunnels undergo more PPV compared with straight tunnel wherein concave wall show the highest PPV. Propagation of blast wave along the tunnel length is significantly affected due to the introduction of curvature resulting in change in reflection patterns. This further leads to variation in stress contours on tunnel lining with higher concentration of stress in curved tunnels than in straight tunnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.