Abstract.In this paper,a novel and robust method which exploits the spatio-temporal context for orderless and blurred visual tracking is presented.This lets the tracker adapt to both rigid and deformable objects on-line even if the image is blurred.We observe that a RGB vectorof animage which is resizedinto a small fixed size can keep enough useful information.Based on this observation and computational reasons,we propose to resize the windows ofboth template and candidate target images into 2 × 2 and use Euclidean Distance to compute the similarity between these two RGB imagevectors for the preliminary screening.We then apply spatio-temporal context based on Bayesian framework to further compute a confidence map for obtaining the best target location.Experimental results on challenging video sequences in MATLAB without code optimization show the proposed tracking method outperforms eightstate-of-the-art methods.
Visual tracking can be particularly interpreted as a process of searching for targets and optimizing the searching. In this paper, we present a novel tracker framework for tracking shaking targets. We formulate the underlying geometrical relevance between a search scope and a target displacement. A uniform sampling among the search scopes is implemented by sliding windows. To alleviate any possible redundant matching, we propose a double-template structure comprising of initial and previous tracking results. The element-wise similarities between a template and its candidates are calculated by jointly using kernel functions which provide a better outlier rejection property. The STC algorithm is used to improve the tracking results by maximizing a confidence map incorporating temporal and spatial context cues about the tracked targets. For better adaptation to appearance variations, we employ a linear interpolation to update the context prior probability of the STC method. Both qualitative and quantitative evaluations are performed on all sequences that contain shaking motions and are selected
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.