Isocitrate dehydrogenase (IDH) gene from Staphylococcus aureus ATCC12600 was cloned, sequenced and characterized (HM067707). PknB site was observed in the active site of IDH; thus, it was predicted as IDH may be regulated by phosphorylation. Therefore, in this study, PknB, alkaline phosphatase III (SAOV 2675) and IDH genes (JN695616, JN645811 and HM067707) of S. aureus ATCC12600 were over expressed from clones PV 1, UVPALP-3 and UVIDH 1. On passing the cytosloic fractions through nickel metal chelate column, pure enzymes were obtained. Phosphorylation of pure IDH by PknB resulted in the complete loss of activity and was restored upon dephosphorylation with SAOV 2675 which indicated that phosphorylation and dephosphorylation regulate IDH activity in S. aureus. Further, when S. aureus ATCC12600 was grown in BHI broth, decreased IDH activity and increased biofilm units were observed; therefore, this regulation of IDH alters redox status in this pathogen favouring biofilm formation.
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.Electronic supplementary materialThe online version of this article (doi:10.1007/s13205-014-0248-3) contains supplementary material, which is available to authorized users.
Distal renal tubular acidosis (dRTA) is an autosomal recessive syndrome results defect in either proximal tubule bicarbonate reabsorption or in distal tubule H(+) secretion and is characterized by severe hyperchloraemic metabolic acidosis in childhood. dRTA is associated with functional variations in the ATP6V1B1 gene encoding β1 subunit of H(+)-ATPase, key membrane transporters for net acid excretion of α-intercalated cells of medullary collecting ducts. In the present study, a 13-year-old male patient suffering with nephropathy and sensorineural deafness was reported in the Department of Nephrology. We predicted improper functioning of ATP6V1B1 gene could be the reason for diseased condition. Therefore, exons 3, 4, and 7 contributing active site of ATP6V1B1 gene was amplified and sequenced (Accession numbers: KF571726, KM222653). The obtained sequences were BLAST searched against the wild type ATP6V1B1 gene which showed novel mutations c.307 A > G, c.308 C > A, c.310 C > G, c.704 T > C, c.705 G > T, c.709 A > G, c.710 A > G, c.714 G > A, c.716 C > A, c.717delC, c.722 C > G, c.728insG, c.741insT, c.753G > C. These mutations resulted in the expression of truncated protein terminating at Lys 209. The mutated ATP6V1B1structure superimposed with wild type showed extensive variations with RMSD 1.336 Å and could not bind to substrate ADP leading to non-functional ATPase. These results conclusively explain these mutations in ATP6V1B1 gene resulted in structural changes causing accumulation of H(+) ions contributing to dRTA with sensorineural deafness.
Osteocytic potentiality of human CD34 stem cells explored in the present study by generating in vitro agarose gel 3D model to understand the bone ossification process. The G-CSF and IL-3 mobilized human CD34 stem cells isolated apheretically from donor peripheral blood and purity of the cells was assessed by FACS and immunocytochemical (ICC) studies. The CD34 stem cells were cultured in gel based 3D model with osteogenic stimulating medium for 21 days. The transition stages from undifferentiated to differentiated osteocytes through osteoblasts were studied with expression markers Differentiated cells at Day 7 showed positive reactivity with monoclonal anti-Runx2, an early osteoblastic marker. qPCR expression analysis showed early and mature osteoblastic markers like RUNX2, Osterix, RANKL, along with osteocyte markers SPARC, Sclerostin. While poor expression of OSCAR genes was observed apart from conspicuous expression of alkaline phosphatase. The expression of sclerostin and SPARC suggests that these differentiated cells are behaving like true osteocytes, sclerostin expression causes transformation of osteoblast into osteocytes and negligible expression of OSCAR, RANK, NFATc and cathepsin K genes explains there are no osteoclasts in the differentiated culture. These cells showed positive reaction with Alizarin red stain indicating expression of calcium bound bone morphogenic proteins like osteonectin. All these results clearly confirm the human CD34 stem cells possess unique osteogenic differentiation potential and can be used in the early regeneration of injured bone.
The successful differentiation of human CD34(+) stem cells into type-II pneumocytes, and transplantation of such cells obtained from the patient's stem cell could be the futuristic approach to regenerate diseased lung alveoli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.