For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4°C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1°C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.Amazon tropical forests | Amazon sustainability | Amazon land use | Amazon savannization | climate change impacts
27B razil has been unique worldwide in terms of land use. Although vast areas of forests and savannahs have been converted into farmland (Fig. 1) -placing the country as a leading global producer of agricultural commodities -it still safeguards the largest tracts of native tropical vegetation on Earth, with extremely high levels of biodiversity. Patterns of land use change, which until recently exhibited the highest worldwide absolute rates of tropical deforestation, largely resulted in low-productivity cattle pastures 2 . Moreover, climate change issues in Brazil are inextricably related to land use and land-use change (LUC) as approximately 80% of the country's total CO 2 -equivalent (CO 2 e) emissions in 2005 were sourced from agriculture and LUC 3 .Demand for farmland is the key immediate driver of LUC in Brazil, and there is little evidence that agricultural expansion is grinding to a halt 4-7 . In fact, Brazil holds the greatest potential for further agricultural expansion in the twenty-first century 8 . Understanding recent LUC patterns (Box 1) and visualizing a sustainable land-use pathway in Brazil have become highly strategic -not only for Brazilians, given that regional and global climate change, food and energy provision, and biodiversity conservation are all at stake. This Review presents an integrated analysis and provides new insights on recent trends in the Brazilian land-use system. In the first two sections we show how Brazil's agriculture is becoming both gradually decoupled from deforestation processes and increasingly intensified and oriented to large-scale farming of trade commodities throughout the country. Next we explain the economic and political factors driving those changes. The fourth section reveals the drawbacks of those changes in aggravating the long history of inequality in land ownership. We then explore repercussions for climate change, namely Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of ~40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural-urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.for the country's g...
Field observations and numerical studies revealed that large scale deforestation in Amazonia could alter the regional climate significantly, projecting a warmer and somewhat drier post‐deforestation climate. In this study we employed the CPTEC‐INPE AGCM to assess the effects of Amazonian deforestation on the regional climate, using simulated land cover maps from a business‐as‐usual scenario of future deforestation in which the rainforest was gradually replaced by degraded pasture or by soybean cropland. The results for eastern Amazonia, where changes in land cover are expected to be larger, show increase in near‐surface air temperature, and decrease in evapotranspiration and precipitation, which occurs mainly during the dry season. The relationship between precipitation and deforestation shows an accelerating decrease of rainfall for increasing deforestation for both classes of land use conversions. Continued expansion of cropland in Amazonia is possible and may have important consequences for the sustainability of the region's remaining natural vegetation.
In 2005, southwestern Amazonia experienced the effects of an intense drought that affected life and biodiversity. Several major tributaries as well as parts of the main river itself contained only a fraction of their normal volumes of water, and lakes were drying up. The consequences for local people, animals and the forest itself are impossible to estimate now, but they are likely to be serious. The analyses indicate that the drought was manifested as weak peak river season during autumn to winter as a consequence of a weak summertime season in southwestern Amazonia; the winter season was also accompanied by rainfall that sometimes reached 25% of the climatic value, being anomalously warm and dry and helping in the propagation of fires. Analyses of climatic and hydrological records in Amazonia suggest a broad consensus that the 2005 drought was linked not to El Niñ o as with most previous droughts in the Amazon, but to warming sea surface temperatures in the tropical North Atlantic Ocean.
Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land‐use, land‐cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land‐use and land‐cover. The model is first shown to reproduce the main contemporary large‐scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.