Cannabidiol (CBD), the main non-psychotomimetic component of the plant Cannabis sativa, exerts therapeutically promising effects on human mental health such as inhibition of psychosis, anxiety and depression. However, the mechanistic bases of CBD action are unclear. Here we investigate the potential involvement of hippocampal neurogenesis in the anxiolytic effect of CBD in mice subjected to 14 d chronic unpredictable stress (CUS). Repeated administration of CBD (30 mg/kg i.p., 2 h after each daily stressor) increased hippocampal progenitor proliferation and neurogenesis in wild-type mice. Ganciclovir administration to GFAP-thymidine kinase (GFAP-TK) transgenic mice, which express thymidine kinase in adult neural progenitor cells, abrogated CBD-induced hippocampal neurogenesis. CBD administration prevented the anxiogenic effect of CUS in wild type but not in GFAP-TK mice as evidenced in the novelty suppressed feeding test and the elevated plus maze. This anxiolytic effect of CBD involved the participation of the CB1 cannabinoid receptor, as CBD administration increased hippocampal anandamide levels and administration of the CB1-selective antagonist AM251 prevented CBD actions. Studies conducted with hippocampal progenitor cells in culture showed that CBD promotes progenitor proliferation and cell cycle progression and mimics the proliferative effect of CB1 and CB2 cannabinoid receptor activation. Moreover, antagonists of these two receptors or endocannabinoid depletion by fatty acid amide hydrolase overexpression prevented CBD-induced cell proliferation. These findings support that the anxiolytic effect of chronic CBD administration in stressed mice depends on its proneurogenic action in the adult hippocampus by facilitating endocannabinoid-mediated signalling.
Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents). The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as ''ethological'' the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field), whereas models that involve learned/ punished responses are referred to as ''conditioned operant conflict tests'' (such as the Vogel conflict test). We also discussed models that involve mainly classical conditioning tests (fear conditioning). Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress), physical (restraint stress), and chronic unpredictable stress.
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation–inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces rapid and long-lasting antidepressant effects in major depressive disorder (MDD) patients. (2R,6R)-Hydroxynorketamine [(2R,6R)-HNK], a metabolite of ketamine, is reported to produce rapid antidepressant effects in rodent models without the side effects of ketamine. Importantly, (2R,6R)-HNK does not block NMDA receptors like ketamine, and the molecular signaling mechanisms for (2R,6R)-HNK remain unknown. Here, we examined the involvement of BDNF/TrkB/mechanistic target of rapamycin complex 1 (mTORC1) signaling in the antidepressant actions of (2R,6R)-HNK. Intramedial prefrontal cortex (intra-mPFC) infusion or systemic (2R,6R)-HNK administration induces rapid and long-lasting antidepressant effects in behavioral tests, identifying the mPFC as a key region for the actions of (2R,6R)-HNK. The antidepressant actions of (2R,6R)-HNK are blocked in mice with a knockin of the BDNF Val66Met allele (which blocks the processing and activity-dependent release of BDNF) or by intra-mPFC microinjection of an anti-BDNF neutralizing antibody. Blockade of L-type voltage-dependent Ca2+ channels (VDCCs), required for activity-dependent BDNF release, also blocks the actions of (2R,6R)-HNK. Intra-mPFC infusion of pharmacological inhibitors of TrkB or mTORC1 signaling, which are downstream of BDNF, also block the actions of (2R,6R)-HNK. Moreover, (2R,6R)-HNK increases synaptic function in the mPFC. These findings indicate that activity-dependent BDNF release and downstream TrkB and mTORC1 signaling, which increase synaptic function in the mPFC, are required for the rapid and long-lasting antidepressant effects of (2R,6R)-HNK, supporting the potential use of this metabolite for the treatment of MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.