Dingoes arrived in Australia during the mid-Holocene and are the native top order terrestrial predator on the mainland and some offshore islands. Although dingoes subsequently spread across the continent, the initial founding population(s) could have been small. To investigate this hypothesis, we examined the potential signatures of bottlenecks and founder effects in dingoes by sequencing the whole genomes of three dingoes and also obtaining the genome data from nine additional dingoes and 56 canines, including wolves, village dogs and breed dogs, and examined the signatures of bottlenecks and founder effects. We found that the nucleotide diversity of dingoes was low, and 36% less than highly inbred breed dogs and 3.3 times lower than wolves. The number of runs of homozygosity (RoH) segments in dingoes was 1.6 to 4.7 times higher than in other canines. Whilst examining deleterious mutational load, we observed that dingoes carried elevated ratios of nonsynonymous to synonymous diversities, significantly higher numbers of homozygous deleterious Single Nucleotide Variants (SNVs), and increased numbers of loss of function SNVs, compared to breed dogs, village dogs, and wolves. These results suggest dingoes experienced a severe bottleneck, potentially caused by the limited number of founding individuals. While many studies observe less diversity and a higher number of deleterious mutations in domesticated populations compared to their wild relatives, we observed the opposite .i.e. wild dingoes have lower diversity and a greater number of harmful mutations than domesticated dogs. Our findings can be explained by bottlenecks and founder effects during the establishment of dingoes on mainland Australia. These findings highlight the need for conservation-based management of dingoes and need for wildlife managers to be cognisant of these findings when considering the use of lethal control measures across the landscape.
At the end of the last ice age, several Atlantic salmon populations got caught up in the lakes and ponds of the Northern Hemisphere. Occasionally, the populations also got locked when the flow of rivers terminated from reaching the sea due to land upheaval. Therefore, the pattern of evolution shaping the landlocked salmon populations is different from the other anadromous salmons, which migrate between the sea and rivers. According to the theories of population genetics, the effect of genetic drift is expected to be more pronounced in the former compared to the latter. Here we examined this using the whole genome data of landlocked and anadromous salmon populations of Norway. Our results showed a 50–80% reduction in the genomic heterozygosity in the landlocked compared to anadromous salmon populations. The number and total size of the runs of homozygosity (RoH) segments of landlocked salmons were two to eightfold higher than those of their anadromous counterparts. We found the former had a higher ratio of nonsynonymous-to-synonymous diversities than the latter. The investigation also revealed a significant elevation of homozygous deleterious Single Nucleotide Variants (SNVs) in the landlocked salmon compared to the anadromous populations. All these results point to a significant reduction in the population size of the landlocked salmons. This process of reduction might have started recently as the phylogeny revealed a recent separation of the landlocked from the anadromous population. Previous studies on terrestrial vertebrates observed similar signatures of a bottleneck when the populations from Island and the mainland were compared. Since landlocked waterbody such as ponds and lakes are geographically analogous to Islands for fish populations, the findings of this study suggest the similarity in the patterns of evolution between the two.
At the end of the last ice age, several Atlantic salmon populations got caught up in the lakes and other small waterbodies of the Northern Hemisphere. Therefore, the pattern of evolution shaping the landlocked salmon populations is different from the other anadromous salmons, which migrate between the sea and rivers. According to the theories of population genetics, the effect of genetic drift is expected to be more pronounced in the former compared to the latter. Here we examined this using the whole genome data of landlocked and anadromous salmon populations of Norway. Our results showed a 50-80% reduction in the genomic heterozygosity in the landlocked compared to anadromous salmon populations. The number and total size of the runs of homozygosity (RoH) segments of landlocked salmons were 2 to 8-fold higher than those of their anadromous counterparts. We found the former had a higher ratio of nonsynonymous-to-synonymous diversities than the latter. The investigation also revealed a significant elevation of homozygous deleterious Single Nucleotide Variants (SNVs) in the landlocked salmon compared to the anadromous populations. All these results point to a significant reduction in the population size of the landlocked salmons, which might have started after the last glacial epoch. Previous studies on terrestrial vertebrates observed similar signatures of a bottleneck when the populations from Island and the mainland were compared. Since landlocked waterbody such as ponds and lakes are geographically analogous to Islands for fish populations, the findings of this study suggest the similarity in the patterns of evolution between the two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.