Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Small interfering RNA (siRNA) delivered to silence overexpressed genes associated with malignancies is a promising targeted therapy to decrease the uncontrolled growth of malignant cells. To create potent delivery agents for siRNA, here we formulated additive polyplexes of siRNA using linoleic acid-substituted polyethylenimine and additive polymers (hyaluronic acid, poly(acrylic acid), dextran sulfate, and methyl cellulose) and characterized their physicochemical properties and effectiveness. Incorporating polyanionic polymer along with anionic siRNA in polyplexes was found to decrease the ζ-potential of polyplexes but enhance the cellular delivery of siRNA. The CDC20 and survivin siRNAs delivered by additive polyplexes showed promising efficacy in breast cancer MDA-MB-231, SUM149PT, MDA-MB-436, and MCF7 cells. However, the side effects of the siRNA delivery were observed in nonmalignant cells, and a careful formulation of siRNA/polymer polyplexes was needed to minimize side effects on normal cells. Because the efficacy of siRNA delivery by additive polyplexes was independent of breast cancer phenotypes used in this study, these polyplexes could be further developed to treat a wide range of breast cancers.
The cell cycle proteins are key regulators of cell cycle progression whose deregulation is one of the causes of breast cancer. RNA interference (RNAi) is an endogenous mechanism to regulate gene expression and it could serve as the basis of regulating aberrant proteins including cell cycle proteins. Since the delivery of small interfering RNA (siRNA) is a main barrier for implementation of RNAi therapy, we explored the potential of a non-viral delivery system, 2.0 kDa polyethylenimines substituted with linoleic acid and caprylic acid, for this purpose. Using a library of siRNAs against cell cycle proteins, we identified cell division cycle protein 20 (CDC20), a recombinase RAD51, and serine–threonine protein kinase CHEK1 as effective targets for breast cancer therapy, and demonstrated their therapeutic potential in breast cancer MDA-MB-435, MDA-MB-231, and MCF7 cells with respect to another well-studied cell cycle protein, kinesin spindle protein. We also explored the efficacy of dicer-substrate siRNA (DsiRNA) against CDC20, RAD51, and CHEK1, where a particular DsiRNA against CDC20 showed an exceptionally high inhibition of cell growth in vitro. There was no apparent effect of silencing selected cell cycle proteins on the potency of the chemotherapy drug doxorubicin. The efficacy of DsiRNA against CDC20 was subsequently assessed in a xenograft model, which indicated a reduced tumor growth as a result of CDC20 DsiRNA therapy. The presented study highlighted specific cell cycle protein targets critical for breast cancer therapy, and provided a polymeric delivery system for their effective down-regulation.
The manuscript investigated the efficacy of a tailored polymeric siRNA delivery system formulation as well as combinational siRNA therapy in metastatic breast cancer cells to inhibit malignant cell growth and migration. The siRNA delivery was undertaken by non-viral means with PEI/HA. We identified six phosphatases that could be critical targets to inhibit migration of highly aggressive metastatic breast cancer cells. We further report on specifically targeting cell cycle and phosphatase proteins to decrease both malignant cell growth and migration simultaneously. Clinical gene therapy against metastatic breast cancer with effective and safe delivery systems is urgently needed to realize the potential of molecular medicine in this deadly disease and our studies in this manuscript is intended to facilitate this endeavor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.