A graph G is strongly distance-balanced if for every edge uv of G and every i ≥ 0 the number of vertices x with d(x, u) = d(x, v) − 1 = i equals the number of vertices y with d(y, v) = d(y, u) − 1 = i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O(mn) for their recognition, where m is the number of edges and n the number of vertices of the graph in question, are given.
Cover-incomparability graphs (C-I graphs, for short) are introduced, whose edge-set is the union of edge-sets of the incomparability and the cover graph of a poset. Posets whose C-I graphs are chordal (resp. distance-hereditary, Ptolemaic) are characterized in terms of forbidden isometric subposets, and a general approach for studying C-I graphs is proposed. Several open problems are also stated.
A vertex subset S of a graph G is a general position set of G if no vertex of S lies on a geodesic between two other vertices of S. The cardinality of a largest general position set of G is the general position number gp(G) of G. It is proved that S ⊆ V (G) is in general position if and only if the components of G[S] are complete subgraphs, the vertices of which form an in-transitive, distance-constant partition of S. If diam(G) = 2, then gp(G) is the maximum of ω(G) and the maximum order of an induced complete multipartite subgraph of the complement of G. As a consequence, gp(G) of a cograph G can be determined in polynomial time. If G is bipartite, then gp(G) ≤ α(G) with equality if diam(G) ∈ {2, 3}. A formula for the general position number of the complement of an arbitrary bipartite graph is deduced and simplified for the complements of trees, of grids, and of hypercubes.1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.