BackgroundThe potential impact of an influenza pandemic can be assessed by calculating a set of transmissibility parameters, the most important being the reproduction number (R), which is defined as the average number of secondary cases generated per typical infectious case.MethodsWe conducted a systematic review to summarize published estimates of R for pandemic or seasonal influenza and for novel influenza viruses (e.g. H5N1). We retained and summarized papers that estimated R for pandemic or seasonal influenza or for human infections with novel influenza viruses.ResultsThe search yielded 567 papers. Ninety-one papers were retained, and an additional twenty papers were identified from the references of the retained papers. Twenty-four studies reported 51 R values for the 1918 pandemic. The median R value for 1918 was 1.80 (interquartile range [IQR]: 1.47–2.27). Six studies reported seven 1957 pandemic R values. The median R value for 1957 was 1.65 (IQR: 1.53–1.70). Four studies reported seven 1968 pandemic R values. The median R value for 1968 was 1.80 (IQR: 1.56–1.85). Fifty-seven studies reported 78 2009 pandemic R values. The median R value for 2009 was 1.46 (IQR: 1.30–1.70) and was similar across the two waves of illness: 1.46 for the first wave and 1.48 for the second wave. Twenty-four studies reported 47 seasonal epidemic R values. The median R value for seasonal influenza was 1.28 (IQR: 1.19–1.37). Four studies reported six novel influenza R values. Four out of six R values were <1.ConclusionsThese R values represent the difference between epidemics that are controllable and cause moderate illness and those causing a significant number of illnesses and requiring intensive mitigation strategies to control. Continued monitoring of R during seasonal and novel influenza outbreaks is needed to document its variation before the next pandemic.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2334-14-480) contains supplementary material, which is available to authorized users.
Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods-scatter plots, the Morris and Sobol' methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method-and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design.
BackgroundLarge-scale intervention programmes to control or eliminate several infectious diseases are currently underway worldwide. However, a major unresolved question remains: what are reasonable stopping points for these programmes? Recent theoretical work has highlighted how the ecological complexity and heterogeneity inherent in the transmission dynamics of macroparasites can result in elimination thresholds that vary between local communities. Here, we examine the empirical evidence for this hypothesis and its implications for the global elimination of the major macroparasitic disease, lymphatic filariasis, by applying a novel Bayesian computer simulation procedure to fit a dynamic model of the transmission of this parasitic disease to field data from nine villages with different ecological and geographical characteristics. Baseline lymphatic filariasis microfilarial age-prevalence data from three geographically distinct endemic regions, across which the major vector populations implicated in parasite transmission also differed, were used to fit and calibrate the relevant vector-specific filariasis transmission models. Ensembles of parasite elimination thresholds, generated using the Bayesian fitting procedure, were then examined in order to evaluate site-specific heterogeneity in the values of these thresholds and investigate the ecological factors that may underlie such variabilityResultsWe show that parameters of density-dependent functions relating to immunity, parasite establishment, as well as parasite aggregation, varied significantly between the nine different settings, contributing to locally varying filarial elimination thresholds. Parasite elimination thresholds predicted for the settings in which the mosquito vector is anopheline were, however, found to be higher than those in which the mosquito is culicine, substantiating our previous theoretical findings. The results also indicate that the probability that the parasite will be eliminated following six rounds of Mass Drug Administration with diethylcarbamazine and albendazole decreases markedly but non-linearly as the annual biting rate and parasite reproduction number increases.ConclusionsThis paper shows that specific ecological conditions in a community can lead to significant local differences in population dynamics and, consequently, elimination threshold estimates for lymphatic filariasis. These findings, and the difficulty of measuring the key local parameters (infection aggregation and acquired immunity) governing differences in transmission thresholds between communities, mean that it is necessary for us to rethink the utility of the current anticipatory approaches for achieving the elimination of filariasis both locally and globally.
The duration of immunity to norovirus (NoV) gastroenteritis has been believed to be from 6 months to 2 years. However, several observations are inconsistent with this short period. To gain better estimates of the duration of immunity to NoV, we developed a mathematical model of community NoV transmission. The model was parameterized from the literature and also fit to age-specific incidence data from England and Wales by using maximum likelihood. We developed several scenarios to determine the effect of unknowns regarding transmission and immunity on estimates of the duration of immunity. In the various models, duration of immunity to NoV gastroenteritis was estimated at 4.1 (95% CI 3.2–5.1) to 8.7 (95% CI 6.8–11.3) years. Moreover, we calculated that children (<5 years) are much more infectious than older children and adults. If a vaccine can achieve protection for duration of natural immunity indicated by our results, its potential health and economic benefits could be substantial.
BackgroundThe current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries—such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)—have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease.Methodology/Principal FindingsWe investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination.Conclusions/SignificanceThe variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.