Replacing toxic solvents with nonhazardous solvents is one of the key challenges for industrial scale commercialization of thin film perovskite photovoltaics. Here, nonhazardous solvent/alcohol/acid systems are presented for the single‐step deposition of pinhole‐free perovskite layers with combined lead halide precursors of Pb(CH3CO2)2·3H2O, PbCl2, and CH3NH3I. Comparable performance to standard hazardous inks is achieved: devices with 15.1% power conversion efficiency are demonstrated and maintain 13.5% tracked for 5 min at maximum power point. Blade coated 4 cm2 solar modules fabricated with highest performing device ink attain 11.9% in power conversion efficiency.
We report on a perovskite solar module with an aperture area of 4 cm 2 and geometrical fill factor of 91%. The module exhibits an aperture area power conversion efficiency (PCE) of 13.6% from a current-voltage scan and 12.6% after 5 min of maximum power point tracking. High PCE originates in pinhole free perovskite films made with a precursor combination of Pb(CH 3 CO 2 ) 2 ·3H 2 O, PbCl 2 , and CH 3 NH 3 I.
Broader contextRecently, significant progress has been made in organometallic halide perovskite solar cell research, boosting the record certified power conversion efficiency (PCE) up to 20.1%.
Perovskites with bandgaps between 1.7 and 1.8 eV are optimal for tandem configurations with crystalline silicon (c-Si) because they facilitate efficient harvest of solar energy. In that respect, achieving a high open-circuit voltage (V OC ) in such wide-bandgap perovskite solar cells is crucial for a high overall power conversion efficiency (PCE). Here, we provide key insights into the factors affecting the V OC in wide-bandgap perovskite solar cells. We show that the influence of the hole transport layer (HTL) on V OC is not simply through its ionization potential but mainly through the quality of the perovskite−HTL interface. With effective interface passivation, we demonstrate perovskite solar cells with a bandgap of 1.72 eV that exhibit a V OC of 1.22 V. Furthermore, by combining the high-V OC perovskite solar cell with a c-Si solar cell, we demonstrate a perovskite−Si four-terminal tandem solar cell with a PCE of 27.1%, exceeding the record PCE of single-junction Si solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.