Sorghum [Sorghum bicolor (L.) Moench] is a very important crop in the arid and semi-arid tropics of India and African subcontinent. In the process of release of new cultivars using multi-location data major emphasis is being given on the superiority of the new cultivars over the ruling cultivars, while very less importance is being given on the genotype 9 environment interaction (GEI). In the present study, performance of ten Indian hybrids over 12 locations across the rainy seasons of 2008 and 2009 was investigated using GGE biplot analysis. Location attributed higher proportion of the variation in the data (59.3-89.9%), while genotype contributed only 3.9-16.8% of total variation. Genotype 9 location interaction contributed 5.8-25.7% of total variation. We could identify superior hybrids for grain yield, fodder yield and for harvest index using biplot graphical approach effectively. Majority of the testing locations were highly correlated. 'Which-wonwhere' study partitioned the testing locations into three mega-environments: first with eight locations with SPH 1606/1609 as the winning genotypes; second megaenvironment encompassed three locations with SPH 1596 as the winning genotype, and last mega-environment represented by only one location with SPH 1603 as the winning genotype. This clearly indicates that though the testing is being conducted in many locations, similar conclusions can be drawn from one or two representatives of each mega-environment. We did not observe any correlation of these mega-environments to their geographical locations. Existence of extensive crossover GEI clearly suggests that efforts are necessary to identify location-specific genotypes over multi-year and -location data for release of hybrids and varieties rather focusing on overall performance of the entries.
has shown potential for achieving >75% oleic acid as demonstrated among introgression lines. Significant advances have been made in seed systems research to bridge the gap between trait discovery, deployment, and delivery through innovative partnerships and action learning.
The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase 0 ¼ due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.