Hydroxychavicol isolated from the chloroform extraction of aqueous extract of Piper betle leaves showed inhibitory activity against oral cavity pathogens. It exhibited an inhibitory effect on all of the oral cavity pathogens tested (MICs of 62.5 to 500 g/ml) with a minimal bactericidal concentration that was twofold greater than the inhibitory concentration. Hydroxychavicol exhibited concentration-dependent killing of Streptococcus mutans ATCC 25175 up to 4؋ MIC and also prevented the formation of water-insoluble glucan. Interestingly, hydroxychavicol exhibited an extended postantibiotic effect of 6 to 7 h and prevented the emergence of mutants of S. mutans ATCC 25175 and Actinomyces viscosus ATCC 15987 at 2؋ MIC. Furthermore, it also inhibited the growth of biofilms generated by S. mutans and A. viscosus and reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide by hydroxychavicol-treated cells of S. mutans and A. viscosus indicated that hydroxychavicol probably works through the disruption of the permeability barrier of microbial membrane structures. Hydroxychavicol also exhibited potent antioxidant and anti-inflammatory activities. This was evident from its concentration-dependent inhibition of lipid peroxidation and significant suppression of tumor necrosis factor alpha expression in human neutrophils. Its efficacy against adherent cells of S. mutans in water-insoluble glucan in the presence of sucrose suggests that hydroxychavicol would be a useful compound for the development of antibacterial agents against oral pathogens and that it has great potential for use in mouthwash for preventing and treating oral infections.Diverse microorganisms inhabit the human oral cavity, and there is always a risk of infection with bacterial pathogens associated with the oral cavity. Streptococcus constitutes 60 to 90% of the remaining bacteria that colonize the teeth within the first 4 h after professional cleaning (17). Other early colonizers include Actinomyces spp., Eikenella spp., Haemophilus spp., Prevotella spp., Propionibacterium spp., and Veillonella spp. Many of the physical interactions that occur between the organisms of this community are known. Streptococcus is the only genus of oral cavity bacteria that demonstrates extensive and intergenic coaggregation (12, 13). The ability of this genus to bind to other early colonizers and to host oral matrices may confer an opportunity to viridians streptococci in establishing early dental plaque (17). Streptococcus mutans can colonize the tooth surface and initiate plaque formation by its ability to synthesize extracellular polysaccharides, mainly water-insoluble glucan from sucrose, using its glucosyltransferase (11).The current research targeting microbial biofilm inhibition has attracted a great deal of attention, and the search for effective antimicrobial agents against these oral pathogens could lead to identification of new agents for the prevention of dental caries and periodontal diseases arising out of dental plaque formation (23...
The outbreak of Coronavirus disease of 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has posed a serious health threat. The increasing number of COVID-19 cases around the world is overwhelming hospitals and pushing the global death toll to over 746,000, which has pushed the sprint to find new treatment options. In this article, we reviewed the SARS-CoV-2 pathophysiology, transmission, and potential treatment strategies.
Preterm birth (PTB) is the most common cause of neonatal morbidity and mortality worldwide. Approximately half of PTBs is linked with microbial etiologies, including pathologic changes to the vaginal microbiota, which vary according to ethnicity. Globally more than 50% of PTBs occur in Asia, but studies of the vaginal microbiome and its association with pregnancy outcomes in Asian women are lacking. This study aimed to longitudinally analyzed the vaginal microbiome and cytokine environment of 18 Karen and Burman pregnant women who delivered preterm and 36 matched controls delivering at full term. Using 16S ribosomal RNA gene sequencing we identified a predictive vaginal microbiota signature for PTB that was detectable as early as the first trimester of pregnancy, characterized by higher levels of Prevotella buccalis, and lower levels of Lactobacillus crispatus and Finegoldia, accompanied by decreased levels of cytokines including IFNγ, IL-4, and TNFα. Differences in the vaginal microbial diversity and local vaginal immune environment were associated with greater risk of preterm birth. Our findings highlight new opportunities to predict PTB in Asian women in low-resource settings who are at highest risk of adverse outcomes from unexpected PTB, as well as in Burman/Karen ethnic minority groups in high-resource regions.
Background: The role of the human microbiome in human health and disease has been studied in various body sites. However, compared to the gut microbiome, where most of the research focus is, the salivary microbiome still bears a vast amount of information that needs to be revealed. This study aims to characterize the salivary microbiome composition in the Qatari population, and to explore specific microbial signatures that can be associated with various lifestyles and different oral conditions. Materials and methods: We characterized the salivary microbiome of 997 Qatari adults using high-throughput sequencing of the V1-V3 region of the 16S rRNA gene. Results: In this study, we have characterized the salivary microbiome of 997 Qatari participants. Our data show that Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria are the common phyla isolated from the saliva samples, with Bacteroidetes being the most predominant phylum. Bacteroidetes was also more predominant in males versus females in the study cohort, although differences in the microbial diversity were not statistically significant. We also show that, a lower diversity of the salivary microbiome is observed in the elderly participants, with Prevotella and Treponema being the most significant genera. In participants with oral conditions such as mouth ulcers, bleeding or painful gum, our data show that Prevotella and Capnocytophaga are the most dominant genera as compared to the controls. Similar patterns were observed in participants with various smoking habits as compared to the non-smoking participants. Our data show that Streptococcus and Neisseria are more dominant among denture users, as compared to the non-denture users. Our data also show that, abnormal oral conditions are associated with a reduced microbial diversity and microbial richness. Moreover, in this study we show that frequent coffee drinkers have higher microbial diversity compared to the non-drinkers, indicating that coffee may cause changes to the salivary microbiome. Furthermore, tea drinkers show higher microbial richness as compared to the non-tea drinkers. Conclusion: This is the first study to assess the salivary microbiome in an Arab population, and one of the largest population-based studies aiming to the characterize the salivary microbiome composition and its association with age, oral health, denture use, smoking and coffee-tea consumption.
Mucormycosis is a serious and potentially fatal fungal infection caused by a type of rare but opportunistic fungal pathogen called mucormycetes. Recently, mucormycosis, also known as black fungus, made severe chaos in India during the second wave (between April and June 2021) of the tragical COVID-19 epidemic by its sudden and devastating surge with up to 50% mortality rate. While the exact cause of its sharp rise suddenly and specifically during the second wave still remains debatable, it has been noted that the people who are diabetic and have recovered from COVID-19 infection are more predisposed to mucormycosis. Nevertheless, the precise reason and mechanism(s) underlying the surge of this deadly infection needs to be investigated to comprehend its pathogenesis and pathological elements and discover rationale preventative/ therapeutic solutions. It is speculated that the indiscriminate use of steroids, antibiotics and zinc as a self-medication practice that increased during the COVID-19 epidemic may have promoted the dysbiosis of gut microbiota thereby inducing immune-suppression and making the risk group highly susceptible to this mycotic disease. In these contexts, this timely article attempts to contemplate and discuss some of the possible factors and potential mechanisms that can help to understand and explain the conundrum of sudden, steep and deadly upsurge of mucormycosis infections during the second wave of COVID-19 epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.