A convenient synthesis of 1,2,3-thiadiazoles and 1,2,3-selenadiazoles was achieved using an ionic liquid as a novel soluble support. Ionic liquid-supported sulfonyl hydrazine was synthesized and reacted with a number of ketones to afford the corresponding ionic liquid-supported hydrazones that were converted to 1,2,3-thiadiazoles in the presence of thionyl chloride. The reaction of ionic liquid-supported hydrazones with selenium dioxide in acetonitrile afforded 1,2,3-selenadiazoles. The advantages of this methodology were the ease of workup, simple reaction conditions, and high purity.
The synthesis of ionic‐liquid‐supported diaryliodonium salts is described. The synthesis is simple and practical, and the ionic liquid products require no chromatographic purification. The ionic‐liquid‐supported diaryliodonium salts are quite stable, and they did not show any sign of decomposition or loss of reactivity, even after being stored for one month at 5 °C. The reactivity of these salts was explored in the phenylation of substituted phenols and carboxylic acids, and the corresponding diaryl ethers and aryl esters, respectively, were synthesized in good to excellent yields and with high purities.
The paper describes synthesis of a novel ionic liquid-supported sulfonyl azide and its applications as diazotransfer reagent of active methylene compounds as well as deformylative diazo transfer reagent. The diazo compounds were isolated in excellent yields (82-94%) and high purity. The method offers better separation of product and reagent. This method is experimentally simple and mild, and requires very short reaction time.
SummaryThe first immobilization of a MacMillan’s first generation organocatalyst onto dendritic support is described. A modified tyrosine-based imidazolidin-4-one was grafted to a soluble high-loading hyperbranched polyglycerol via a copper-catalyzed alkyne–azide cycloaddition (CuAAC) reaction and readily purified by dialysis. The efficiency of differently functionalized multivalent organocatalysts 4a–c was tested in the asymmetric Friedel–Crafts alkylation of N-methylpyrrole with α,β-unsaturated aldehydes. A variety of substituted enals was investigated to explore the activity of the catalytic system which was also compared with monovalent analogues. The catalyst 4b showed excellent turnover rates and no loss of activity due to immobilization, albeit moderate enantioselectivities were observed. Moreover, easy recovery by selective precipitation allowed the reuse of the catalyst for three cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.