The usefulness of heterocyclic chalcone derivative as a therapeutic target in controlling hypertension and its site specific binding interaction with model transport protein to get a clear picture about its delivery mechanism.
AbstractInhibition of Angiotensin Converting Enzyme (ACE) is identified as a main therapeutic target in controlling hypertension. The principal intent of this work is to investigate the ACE inhibitory property of a quinoline appended chalcone derivative (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ), and its binding mechanism with model transport protein BSA by employing steady state and time resolved fluorescence, Circular Dichroism (CD), in silico Molecular Docking, Induced Fit Docking (IFD) and Molecular Dynamics (MD) simulation. Incubation of ADMQ with kidney cortex plasma membrane shows considerable antihypertensive effect by the inhibition of ACE. ADMQ undergoes strong interaction with ACE both in absence and presence of BSA. Comparable ACE inhibitory mechanistic profile of ADMQ with standard drug captopril has been identified in terms of ligand interaction pattern, changes in secondary structural elements and protein RMSF. The steady state emission of BSA undergoes a remarkable decrement via ground state complex formation upon addition of ADMQ in aqueous buffer solution of BSA at physiological pH 7.4 contrary to the time resolved and FRET measurement where both the static andenergy transfer mechanism co-exists. Rotationally restricted ADMQ molecule shows strong binding affinity towards subdomain IIA of site I with a close proximity (2.45 nm) of the Trp 213 residue. The minor decrease of α-helical content as calculated from CD spectral measurement and 1-3 Å change in protein RMSD during MD simulation clearly indicate that the polypeptide chain is partially destabilized due to the above site specific accommodation of the host (ADMQ). A slight diminution in the ACE inhibitory profile is observed in presence of BSA; however BSA shows lesser binding towards ADMQ in presence of the target enzyme. The spectroscopic research described herein may provide enormous important information for ACE inhibition of chalcone derivative and its detail binding interaction with carrier protein for the chalcone based drug designing in medicinal chemistry research.
The present study embodies design, in silico DNA interaction, synthesis of benzothiazole containing naphthalimide derivative, 2-(6-chlorobenzo[d]thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)-dione (CBIQD) along with its systematic photophysics, solvatochromic behavior, and solvation dynamics using an experimental and theoretical spectroscopic approach. Steady-state dual emission and biexponential fluorescence decay reveals the formation of two different excited species. Ground- and excited-state optimized geometry and the potential-energy curve obtained from DFT and TD-DFT calculation ascertained the existence of nonplanar and planar conformation. When the solvent polarity is changed from nonpolar to protic polar, the feebly emissive emission band highly intensifies probably due to the reversal of n, π*-π, π* emissive state along with consequent modulation of their energy gap that is induced by H-bonding. Excluding nonpolar solvents, in all other solvents, the Stokes shift correlates linearly with orientation polarizability, whereas in water, the story remains intriguing. With photoexcitation, intermolecular H-bonding stimulates the pyramidalization tendency of imide "N" with subsequent conformational change of GS nonplanar geometry to a coplanar one through acceptor rehybridization generating a rehybridized intramolecular charge transfer (RICT) state that caused a dramatic fluorescence upsurge. This allosteric modulation is promoted by excited-state H-bonding dynamics especially in strong H-bond donor water. A close interplay between preferential solvation and the proximity effect is evident in the emission behavior in a benzene (Bn)-ethanol (EtOH) binary mixture. Molecular docking analysis delineates considerable noncovalent sandwiched π-π stacking interactions of CBIQD with the pyrimidine rings as well as with imidazole rings of dG 6 and dG 2 base pairs of B-DNA double helix, which probably suffices the design strategy adopted. Overall, a strategic design to synthesize a highly fluorescent and potential bioactive agent is executed to revolutionize the fluorophore field due its enormous progressive importance in biochemical applications.
The legacy of phosphorescence from expensive organometallic compounds has inspired researchers to develop efficient metal-free organic phosphors. Although organic phosphors offer a cheaper alternative, the long-lived triplets of organic phosphors that are primarily consumed by vibrational dissipation need to be adequately suppressed, and this provides an opportunity to design new organic entities, at par with the organometallic compounds, based on conformational control and incorporation of useful functional groups to alter their emissive properties, especially phosphorescence. Here, we have achieved a proficient dual state emission, underlining the key design rule of conformational control in an organic molecular platform for 2-(6-chlorobenzo[d]thiazol-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (CBIQD). In contrast to other known naphthalimides, the system limiting access to non-radiative triplet states is achieved by steric encumbrance which exhibits strong phosphorescence. Here, in addition to strong fluorescence (from planar conformer), phosphorescence is unlocked by suppression of non-radiative channels from the non-planar conformer in glassy solvents (77 K) and when embedded in a polymer matrix of poly(methyl methacrylate) (PMMA) at RT. The spectroscopic delineation of adopted geometry and optical property relationship is sought by a steric approach, extent of intramolecular charge transfer (ICT), presence of carbonyl groups, directed heavy atom effect and the spin-orbit coupling (SOC) invoked by -S- and -Cl atoms. Time dependent density functional theory (TD-DFT) is used to explain the favourable mechanistic path for the decay of excited states (ESs) leading to phosphorescence from a non-planar conformer and fluorescence from a planar conformer. The spectacular access to the radiative singlet and triplet states suggests that there is less scope for loss channels. The phosphorescence of the CBIQD-PMMA system may find use in other biomedical applications due to the biocompatibility of each component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.