The present numerical investigation identifies quantitative effects of fundamental controlling parameters on the detachment characteristics of isolated bubbles in cases of pool boiling in the nucleate boiling regime. For this purpose, an improved Volume of Fluid (VOF) approach, developed previously in the general framework of OpenFOAM Computational Fluid Dynamics (CFD) Toolbox, is further coupled with heat transfer and phase change. The predictions of the model are quantitatively verified against an existing analytical solution and experimental data in the literature. Following the model validation, four different series of parametric numerical experiments are performed, exploring the effect of the initial thermal boundary layer (ITBL) thickness for the case of saturated pool boiling of R113 as well as the effects of the surface wettability, wall superheat and gravity level for the cases of R113, R22 and R134a refrigerants. It is confirmed that the ITBL is a very important parameter in the bubble growth and detachment process. Furthermore, for all of the examined working fluids the bubble detachment characteristics seem to be significantly affected by the triple-line contact angle (i.e., the wettability of the heated plate) for equilibrium contact angles higher than 45 • . As expected, the simulations revealed that the heated wall superheat is very influential on the bubble growth and detachment process. Finally, besides the novelty of the numerical approach, a last finding is the fact that the effect of the gravity level variation in the bubble detachment time and the volume diminishes with the increase of the ambient pressure.
Coastal erosion that is generated by the reduction of the annual sediment yield at river outlets, due to the construction of reservoirs, constitutes one of the main environmental problems in many parts of the world. Nestos is one of the most important transboundary rivers, flowing through Bulgaria and Greece, characterized by its great biodiversity. In the Greek part of the river, two reservoirs, the Thisavros Reservoir and the Platanovrysi Reservoir, have already been constructed and started operating in 1997 and 1999, respectively. The present paper constitutes the first attempt where the assessment of reservoir sedimentation effect on the coastal erosion for the case of the Nestos River delta and the adjacent shorelines is addressed in detail, through mathematical modeling, modern remote sensing techniques and field surveying. It is found that the construction and operation of the considered reservoirs have caused a dramatic decrease (about 83%) in the sediments supplied directly to the basin outlet and indirectly to the neighbouring coast and that this fact has almost inversed the erosion/accretion balance in the deltaic as well as the adjacent shorelines.Before the construction of the reservoirs, accretion predominated erosion by 25.36%, while just within five years after the construction of the reservoirs, erosion predominates accretion by 21.26%.
Liquid penetration analysis in porous media is of great importance in a wide range of applications such as ink jet printing technology, painting and textile design. This article presents an investigation of droplet impingement onto metallic meshes, aiming to provide insights by identifying and quantifying impact characteristics that are difficult to measure experimentally. For this purpose, an enhanced Volume-Of-Fluid (VOF) numerical simulation framework is utilised, previously developed in the general context of the OpenFOAM CFD Toolbox. Droplet impacts on metallic meshes are performed both experimentally and numerically with satisfactory degree of agreement. From the experimental investigation three main outcomes are observed—deposition, partial imbibition, and penetration. The penetration into suspended meshes leads to spectacular multiple jetting below the mesh. A higher amount of liquid penetration is linked to higher impact velocity, lower viscosity and larger pore size dimension. An estimation of the liquid penetration is given in order to evaluate the impregnation properties of the meshes. From the parametric analysis it is shown that liquid viscosity affects the adhesion characteristics of the drops significantly, whereas droplet break-up after the impact is mostly controlled by surface tension. Additionally, wettability characteristics are found to play an important role in both liquid penetration and droplet break-up below the mesh.
The "Direct Numerical Simulations" (DNS) of droplet impact processes is of great interest and importance for a variety of industrial applications, where laboratory experiments might be difficult, costly and time-consuming. Furthermore, in most cases after validated against experimental data, they can be utilised to further explain the experimental measurements or to extend the experimental runs by performing "virtual" numerical experiments. In such "DNS" calculations of the dynamic topology of the interface between the liquid and gas phase, the selected dynamic contact angle treatment is a key parameter for the accurate prediction of the droplet dynamics. In the present paper, droplet impact phenomena on smooth, dry surfaces are simulated using three different contact angle treatments. For this purpose, an enhanced VOF-based model, that accounts for spurious currents reduction, which has been previously implemented in OpenFOAM CFD Toolbox, is utilised and further enhanced. Apart from the already implemented constant and dynamic contact angle treatments in OpenFOAM, the dynamic contact angle model of Kistler, that considers the maximum advancing and minimum receding contact angles, is implemented in the code. The enhanced VOF model predictions are initially compared with literature available experimental data of droplets impacting on smooth surfaces with various wettability characteristics. The constant contact angle treatment of OpenFOAM as well as the Kistler's implementation show good qualitative and quantitative agreement with experimental results up to the point of maximum spreading, when the spreading is inertia dominated. However, only Kistler's model succeeds to accurately predict both the advancing and the recoiling phase of the droplet impact, for a variety of surface wettability characteristics. The dynamic contact angle treatment fails to predict almost all stages of the droplet impact. The optimum version of the model is then applied for 2 additional series of parametric numerical simulations that identify and quantify the effects of surface tension and viscosity, in the droplet impact dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.