The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Memory of past cellular responses is an essential adaptation to repeating environmental stimuli. We addressed the question of whether gamma interferon (IFN-␥)-inducible transcription generates memory that sensitizes cells to a second stimulus. We have found that the major histocompatibility complex class II gene DRA is relocated to promyelocytic leukemia (PML) nuclear bodies upon induction with IFN-␥, and this topology is maintained long after transcription shut off. Concurrent interaction of PML protein with mixedlineage leukemia generates a prolonged permissive chromatin state on the DRA gene characterized by high promoter histone H3 K4 dimethylation that facilitates rapid expression upon restimulation. We propose that the primary signal-induced transcription generates spatial and epigenetic memory that is maintained through several cell generations and endows the cell with increased responsiveness to future activation signals.
The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up‐regulated upon B‐cell receptor (BCR) engagement and IL‐4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR‐deficient (Ahr
−/−) B cells proliferate less than AhR‐sufficient (Ahr
+/+) cells following in vitro
BCR stimulation and in vivo adoptive transfer models confirmed that Ahr
−/− B cells are outcompeted by Ahr
+/+ cells. Transcriptome comparison of AhR‐deficient and AhR‐sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.
The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with DRA transcription after TSA treatment. We found that a dramatic increase in promoter linked histone acetylation is followed by an increase in Histone H3 lysine 4 methylation and a decrease of lysine 9 methylation. Fluorescence recovery after photobleaching (FRAP) experiments showed that TSA increases the mobility of HDAC while decreasing the mobility of the class II enhanceosome factor RFX5. These data, in combination with ChIP experiments, indicate that the TSA-mediated induction of DRA transcription involves HDAC relocation and enhanceosome stabilization. In order to gain a genome-wide view of the genes responding to inhibition of deacetylases, we compared the transcriptome of B cells before and after TSA treatment using Affymetrix microarrays. This analysis showed that in addition to the DRA gene, the entire MHC II family and the adjacent histone cluster that are located in chromosome 6p21-22 locus are strongly induced by TSA. A complex pattern of gene reprogramming by TSA involves immune recognition, antiviral, apoptotic and inflammatory pathways and extends the rationale for using Histone Deacetylase Inhibitors (HDACi) to modulate the immune response.
Pelly et al. use novel mouse reporter systems to show that a proportion of Th2 cells develop from Foxp3-expressing cells in an IL-4–dependent manner, highlighting the potential to subvert T reg cell–mediated suppression in favor of type 2 immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.