HIV-1 is responsible for a global pandemic of 35 million people and continues to spread at a rate of >2 million new infections/year. It is widely acknowledged that a protective vaccine would be the most effective means to reduce HIV-1 spread and ultimately eliminate the pandemic, whereas a therapeutic vaccine might help to mitigate the clinical course of the disease and to contribute to virus eradication strategies. However, despite more than 30 years of research, we do not have a vaccine capable of protecting against HIV-1 infection or impacting on disease progression. This, in part, denotes the challenge of identifying immunogens and vaccine modalities with a reduced risk of failure in late stage development. However, progress has been made in epitope identification for the induction of broadly neutralizing antibodies. Thus, peptide-based vaccination has become one of the challenges of this decade. While some researchers reconstitute envelope protein conformation and stabilization to conserve the epitope targeted by neutralizing antibodies, others have developed strategies based on peptide-carrier vaccines with a similar goal. Here, we will review the major peptide-carrier based approaches in the vaccine field and their application and recent development in the HIV-1 field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.