This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The characterization of radioactive waste packages is mandatory for their transport, interim storage and final disposal. In this framework, the Nuclear Measurement Laboratory of CEA DES IRESNE Institute, at Cadarache, France, uses a high-energy electron linear accelerator (LINAC) to produce an interrogating bremsstrahlung beam with endpoint energies ranging from 9 to 21 MeV to perform X-ray imaging and high-energy photon interrogation on large concrete packages. In particular, highenergy photon beam induces photofission reactions in both fissile (235U, 239Pu, 241Pu) and fertile (238U, 240Pu, 232Th, etc.) actinides possibly present in the radioactive waste. In order to assess their mass, we use delayed gamma rays emitted by their photofission products, which are measured with a 50 % relative efficiency High-Purity Germanium (HPGe) detector. Actinide differentiation, which is important for the fissile mass estimation, is based on the ratios of gamma rays emitted by different photofission products and requires appropriate corrections for the gamma attenuation in concrete. To this aim, we report here a localization method of point-like nuclear materials in the concrete matrix, based on the differential attenuation of several gamma rays emitted by a same photofission product. We use here the 1435.9 and 2639.6 keV lines of 138Cs, with both experimental data and MCNP numerical simulations to determine the (r,θ) coordinates of nuclear materials. Then, the depth inside the concrete matrix, which is determined with a precision of a few percent, mainly depending on counting statistics on 1435.9 and 2639.6 keV net peak areas, is used to correct for the different gamma ratios used in the actinide identification method. Experimental tests with uranium samples have been performed to validate the localization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.