Microbial community structure and function rely on complex interactions whose underlying molecular mechanisms are poorly understood. To investigate these interactions in a simple microbiome, we introduced E. coli into an experimental community based on a cheese rind and identified the differences in E. coli’s genetic requirements for growth in interactive and non-interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq. Genetic requirements varied among pairwise growth conditions and between pairwise and community conditions. Our analysis points to mechanisms by which growth conditions change as a result of increasing community complexity and suggests that growth within a community relies on a combination of pairwise and higher-order interactions. Our work provides a framework for using the model organism E. coli as a readout to investigate microbial interactions regardless of the genetic tractability of members of the studied ecosystem.
Microbial interactions are major determinants in shaping microbiome structure and function. Although fungi are found across diverse microbiomes, the mechanisms through which fungi interact with other species remain largely uncharacterized. In this work, we explore the diversity of ways in which fungi can impact bacteria by characterizing interaction mechanisms across 16 different bacterial-fungal pairs, involving 8 different fungi and 2 bacteria (Escherichia coli and Pseudomonas psychrophila). Using random barcode transposon-site sequencing (RB-TnSeq), we identified a large number of bacterial genes and pathways important in fungal interaction contexts. Within each interaction, fungal partners elicit both antagonistic and beneficial effects. Using a panel of phylogenetically diverse fungi allowed us to identify interactions that were conserved across all species. Our data show that all fungi modulate the availability of iron and biotin, suggesting that these may represent conserved bacterial-fungal interactions. Several fungi also appear to produce previously uncharacterized antibiotic compounds. Generating a mutant in a master regulator of fungal secondary metabolite production showed that fungal metabolites are key shapers of bacterial fitness profiles during interactions. This work demonstrates a diversity of mechanisms through which fungi are able to interact with bacterial species. In addition to many species-specific effects, there appear to be conserved interaction mechanisms which may be important across microbiomes. INTRODUCTION .
Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.