Motivation Structure-based computational protein design (CPD) plays a critical role in advancing the field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences that fold into a target structure and ultimately perform a desired function. The usual approach considers a single rigid backbone as a target, which ignores backbone flexibility. Multistate design (MSD) allows instead to consider several backbone states simultaneously, defining challenging computational problems. Results We introduce efficient reductions of positive MSD problems to Cost Function Networks with two different fitness definitions and implement them in the Pompd (Positive Multistate Protein design) software. Pompd is able to identify guaranteed optimal sequences of positive multistate full protein redesign problems and exhaustively enumerate suboptimal sequences close to the MSD optimum. Applied to nuclear magnetic resonance and back-rubbed X-ray structures, we observe that the average energy fitness provides the best sequence recovery. Our method outperforms state-of-the-art guaranteed computational design approaches by orders of magnitudes and can solve MSD problems with sizes previously unreachable with guaranteed algorithms. Availability and implementation https://forgemia.inra.fr/thomas.schiex/pompd as documented Open Source. Supplementary information Supplementary data are available at Bioinformatics online.
Proteins are the main active molecules of life. Although natural proteins play many roles, as enzymes or antibodies for example, there is a need to go beyond the repertoire of natural proteins to produce engineered proteins that precisely meet application requirements, in terms of function, stability, activity or other protein capacities. Computational Protein Design aims at designing new proteins from first principles, using full-atom molecular models. However, the size and complexity of proteins require approximations to make them amenable to energetic optimization queries. These approximations make the design process less reliable, and a provable optimal solution may fail. In practice, expensive libraries of solutions are therefore generated and tested. In this paper, we explore the idea of generating libraries of provably diverse low-energy solutions by extending cost function network algorithms with dedicated automaton-based diversity constraints on a large set of realistic full protein redesign problems. We observe that it is possible to generate provably diverse libraries in reasonable time and that the produced libraries do enhance the Native Sequence Recovery, a traditional measure of design methods reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.