STUDY QUESTION Which genes are confidently linked to human monogenic male infertility? SUMMARY ANSWER Our systematic literature search and clinical validity assessment reveals that a total of 78 genes are currently confidently linked to 92 human male infertility phenotypes. WHAT IS KNOWN ALREADY The discovery of novel male infertility genes is rapidly accelerating with the availability of next-generating sequencing methods, but the quality of evidence for gene–disease relationships varies greatly. In order to improve genetic research, diagnostics and counseling, there is a need for an evidence-based overview of the currently known genes. STUDY DESIGN, SIZE, DURATION We performed a systematic literature search and evidence assessment for all publications in Pubmed until December 2018 covering genetic causes of male infertility and/or defective male genitourinary development. PARTICIPANTS/MATERIALS, SETTING, METHODS Two independent reviewers conducted the literature search and included papers on the monogenic causes of human male infertility and excluded papers on genetic association or risk factors, karyotype anomalies and/or copy number variations affecting multiple genes. Next, the quality and the extent of all evidence supporting selected genes was weighed by a standardized scoring method and used to determine the clinical validity of each gene–disease relationship as expressed by the following six categories: no evidence, limited, moderate, strong, definitive or unable to classify. MAIN RESULTS AND THE ROLE OF CHANCE From a total of 23 526 records, we included 1337 publications about monogenic causes of male infertility leading to a list of 521 gene–disease relationships. The clinical validity of these gene–disease relationships varied widely and ranged from definitive (n = 38) to strong (n = 22), moderate (n = 32), limited (n = 93) or no evidence (n = 160). A total of 176 gene–disease relationships could not be classified because our scoring method was not suitable. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our literature search was limited to Pubmed. WIDER IMPLICATIONS OF THE FINDINGS The comprehensive overview will aid researchers and clinicians in the field to establish gene lists for diagnostic screening using validated gene–disease criteria and help to identify gaps in our knowledge of male infertility. For future studies, the authors discuss the relevant and important international guidelines regarding research related to gene discovery and provide specific recommendations for the field of male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a VICI grant from The Netherlands Organization for Scientific Research (918-15-667 to J.A.V.), the Royal Society, and Wolfson Foundation (WM160091 to J.A.V.) as well as an investigator award in science from the Wellcome Trust (209451 to J.A.V.). PROSPERO REGISTRATION NUMBER None.
BACKGROUND Human male infertility has a notable genetic component, including well-established diagnoses such as Klinefelter syndrome, Y-chromosome microdeletions and monogenic causes. Approximately 4% of all infertile men are now diagnosed with a genetic cause, but a majority (60–70%) remain without a clear diagnosis and are classified as unexplained. This is likely in large part due to a delay in the field adopting next-generation sequencing (NGS) technologies, and the absence of clear statements from field leaders as to what constitutes a validated cause of human male infertility (the current paper aims to address this). Fortunately, there has been a significant increase in the number of male infertility NGS studies. These have revealed a considerable number of novel gene–disease relationships (GDRs), which each require stringent assessment to validate the strength of genotype–phenotype associations. To definitively assess which of these GDRs are clinically relevant, the International Male Infertility Genomics Consortium (IMIGC) has identified the need for a systematic review and a comprehensive overview of known male infertility genes and an assessment of the evidence for reported GDRs. OBJECTIVE AND RATIONALE In 2019, the first standardised clinical validity assessment of monogenic causes of male infertility was published. Here, we provide a comprehensive update of the subsequent 1.5 years, employing the joint expertise of the IMIGC to systematically evaluate all available evidence (as of 1 July 2020) for monogenic causes of isolated or syndromic male infertility, endocrine disorders or reproductive system abnormalities affecting the male sex organs. In addition, we systematically assessed the evidence for all previously reported possible monogenic causes of male infertility, using a framework designed for a more appropriate clinical interpretation of disease genes. SEARCH METHODS We performed a literature search according to the PRISMA guidelines up until 1 July 2020 for publications in English, using search terms related to ‘male infertility’ in combination with the word ‘genetics’ in PubMed. Next, the quality and the extent of all evidence supporting selected genes were assessed using an established and standardised scoring method. We assessed the experimental quality, patient phenotype assessment and functional evidence based on gene expression, mutant in-vitro cell and in-vivo animal model phenotypes. A final score was used to determine the clinical validity of each GDR, across the following five categories: no evidence, limited, moderate, strong or definitive. Variants were also reclassified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines and were recorded in spreadsheets for each GDR, which are available at imigc.org. OUTCOMES The primary outcome of this review was an overview of all known GDRs for monogenic causes of human male infertility and their clinical validity. We identified a total of 120 genes that were moderately, strongly or definitively linked to 104 infertility phenotypes. WIDER IMPLICATIONS Our systematic review curates all currently available evidence to reveal the strength of GDRs in male infertility. The existing guidelines for genetic testing in male infertility cases are based on studies published 25 years ago, and an update is far overdue. The identification of 104 high-probability ‘human male infertility genes’ is a 33% increase from the number identified in 2019. The insights generated in the current review will provide the impetus for an update of existing guidelines, will inform novel evidence-based genetic testing strategies used in clinics, and will identify gaps in our knowledge of male infertility genetics. We discuss the relevant international guidelines regarding research related to gene discovery and provide specific recommendations to the field of male infertility. Based on our findings, the IMIGC consortium recommend several updates to the genetic testing standards currently employed in the field of human male infertility, most important being the adoption of exome sequencing, or at least sequencing of the genes validated in this study, and expanding the patient groups for which genetic testing is recommended.
Male infertility affects $7% of men, but its causes remain poorly understood. The most severe form is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis. So far, only a few validated disease-associated genes have been reported. To address this gap, we performed whole-exome sequencing in 58 men with unexplained meiotic arrest and identified the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 associated protein, in three unrelated men. This variant most likely results in a truncated protein as shown in vitro by heterologous expression of mutant M1AP. Next, we screened four large cohorts of infertile men and identified three additional individuals carrying homozygous c.676dup and three carrying combinations of this and other likely causal variants in M1AP. Moreover, a homozygous missense variant, c.1166C>T (p.Pro389Leu), segregated with infertility in five men from a consanguineous Turkish family. The common phenotype between all affected men was NOA, but occasionally spermatids and rarely a few spermatozoa in the semen were observed. A similar phenotype has been described for mice with disruption of M1ap. Collectively, these findings demonstrate that mutations in M1AP are a relatively frequent cause of autosomal recessive severe spermatogenic failure and male infertility with strong clinical validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.