Abstract. We introduce a generalization of Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a word appears as a subsequence of another finite word. Similarly to the Sierpiński gasket that can be built as the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from Pascal triangle modulo 2, we describe and study the first properties of the subset of [0, 1] × [0, 1] associated with this extended Pascal triangle modulo a prime p.
Abstract. This paper is about counting the number of distinct (scattered) subwords occurring in a given word. More precisely, we consider the generalization of the Pascal triangle to binomial coefficients of words and the sequence (S(n)) n≥0 counting the number of positive entries on each row. By introducing a convenient tree structure, we provide a recurrence relation for (S(n)) n≥0 . This leads to a connection with the 2-regular Stern-Brocot sequence and the sequence of denominators occurring in the Farey tree. Then we extend our construction to the Zeckendorf numeration system based on the Fibonacci sequence. Again our tree structure permits us to obtain recurrence relations for and the F -regularity of the corresponding sequence.
Many digital functions studied in the literature, e.g., the summatory function of the base-k sum-of-digits function, have a behavior showing some periodic fluctuation. Such functions are usually studied using techniques from analytic number theory or linear algebra. In this paper we develop a method based on exotic numeration systems and we apply it on two examples motivated by the study of generalized Pascal triangles and binomial coefficients of words.2010 Mathematics Subject Classification. 11A63, 11B85, 41A60. J. Leroy is an FNRS post-doctoral fellow. M. Stipulanti is supported by a FRIA grant 1.E030.16.
The $n$th term of an automatic sequence is the output of a deterministic
finite automaton fed with the representation of $n$ in a suitable numeration
system. In this paper, instead of considering automatic sequences built on a
numeration system with a regular numeration language, we consider those built
on languages associated with trees having periodic labeled signatures and, in
particular, rational base numeration systems. We obtain two main
characterizations of these sequences. The first one is concerned with $r$-block
substitutions where $r$ morphisms are applied periodically. In particular, we
provide examples of such sequences that are not morphic. The second
characterization involves the factors, or subtrees of finite height, of the
tree associated with the numeration system and decorated by the terms of the
sequence.
We make certain bounds in Krebs' proof of Cobham's theorem explicit and obtain corresponding upper bounds on the length of a common prefix of an aperiodic a-automatic sequence and an aperiodic b-automatic sequence, where a and b are multiplicatively independent. We also show that an automatic sequence cannot have arbitrarily large factors in common with a Sturmian sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.