Adrenocorticotrophic hormone (ACTH)-secreting pituitary tumors are associated with high morbidity due to excess glucocorticoid production. No suitable drug therapies are currently available, and surgical excision is not invariably curative. Here we demonstrate immunoreactive expression of the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) exclusively in normal ACTH-secreting human anterior pituitary cells: PPAR-gamma was abundantly expressed in all of six human ACTH-secreting pituitary tumors studied. PPAR-gamma activators induced G0/G1 cell-cycle arrest and apoptosis and suppressed ACTH secretion in human and murine corticotroph tumor cells. Development of murine corticotroph tumors, generated by subcutaneous injection of ACTH-secreting AtT20 cells, was prevented in four of five mice treated with the thiazolidinedione compound rosiglitazone, and ACTH and corticosterone secretion was suppressed in all treated mice. Based on these findings, thiazolidinediones may be an effective therapy for Cushing disease
The discovery and optimization of a novel series of aminoisoquinolines as potent, selective, and efficacious inhibitors of the mutant B-Raf pathway is presented. The N-linked pyridylpyrimidine benzamide 2 was identified as a potent, modestly selective inhibitor of the B-Raf enzyme. Replacement of the benzamide with an aminoisoquinoline core significantly improved kinase selectivity and imparted favorable pharmacokinetic properties, leading to the identification of 1 as a potent antitumor agent in xenograft models.
Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. Cancer Res; 71(17); 5818-26. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.