Abstract. We present Strabon, a new RDF store that supports the state of the art semantic geospatial query languages stSPARQL and GeoSPARQL. To illustrate the expressive power offered by these query languages and their implementation in Strabon, we concentrate on the new version of the data model stRDF and the query language stSPARQL that we have developed ourselves. Like GeoSPARQL, these new versions use OGC standards to represent geometries where the original versions used linear constraints. We study the performance of Strabon experimentally and show that it scales to very large data volumes and performs, most of the times, better than all other geospatial RDF stores it has been compared with.
Database systems deliver impressive performance for large classes of workloads as the result of decades of research into optimizing database engines. High performance, however, is achieved at the cost of versatility. In particular, database systems only operate efficiently over loaded data, i.e., data converted from its original raw format into the system's internal data format. At the same time, data volume continues to increase exponentially and data varies increasingly, with an escalating number of new formats. The consequence is a growing impedance mismatch between the original structures holding the data in the raw files and the structures used by query engines for efficient processing. In an ideal scenario, the query engine would seamlessly adapt itself to the data and ensure efficient query processing regardless of the input data formats, optimizing itself to each instance of a file and of a query by leveraging information available at query time. Today's systems, however, force data to adapt to the query engine during data loading. This paper proposes adapting the query engine to the formats of raw data. It presents RAW, a prototype query engine which enables querying heterogeneous data sources transparently. RAW employs Just-In-Time access paths, which efficiently couple heterogeneous raw files to the query engine and reduce the overheads of traditional general-purpose scan operators. There are, however, inherent overheads with accessing raw data directly that cannot be eliminated, such as converting the raw values. Therefore, RAW also uses column shreds, ensuring that we pay these costs only for the subsets of raw data strictly needed by a query. We use RAW in a real-world scenario and achieve a two-order of magnitude speedup against the existing hand-written solution.
Traditionally, analytical database engines have used task parallelism provided by modern multisocket multicore CPUs for scaling query execution. Over the past few years, GPUs have started gaining traction as accelerators for processing analytical queries due to their massively data-parallel nature and high memory bandwidth. Recent work on designing join algorithms for CPUs has shown that carefully tuned join implementations that exploit underlying hardware can outperform naive, hardwareoblivious counterparts and provide excellent performance on modern multicore servers. However, there has been no such systematic analysis of hardware-conscious join algorithms for GPUs that systematically explores the dimensions of partitioning (partitioned versus non-partitioned joins), data location (data fitting and not fitting in GPU device memory), and access pattern (skewed versus uniform).In this paper, we present the design and implementation of a family of novel, partitioning-based GPU-join algorithms that are tuned to exploit various GPU hardware characteristics for working around the two main limitations of GPUs-limited memory capacity and slow PCIe interface. Using a thorough evaluation, we show that: i) hardware-consciousness plays a key role in GPU joins similar to CPU joins and our join algorithms can process 1 Billion tuples/second even if no data is GPU resident, ii) radix partitioning-based GPU joins that are tuned to exploit GPU hardware can substantially outperform non-partitioned hash joins, iii) hardware-conscious GPU joins can effectively overcome GPU limitations and match, or even outperform, state-of-the-art CPU joins.
Industry and academia are continuously becoming more data-driven and data-intensive, relying on the analysis of a wide variety of heterogeneous datasets to gain insights. The different data models and formats pose a significant challenge on performing analysis over a combination of diverse datasets. Serving all queries using a single, general-purpose query engine is slow. On the other hand, using a specialized engine for each heterogeneous dataset increases complexity: queries touching a combination of datasets require an integration layer over the different engines.This paper presents a system design that natively supports heterogeneous data formats and also minimizes query execution times. For multi-format support, the design uses an expressive query algebra which enables operations over various data models. For minimal execution times, it uses a code generation mechanism to mimic the system and storage most appropriate to answer a query fast. We validate our design by building Proteus, a query engine which natively supports queries over CSV, JSON, and relational binary data, and which specializes itself to each query, dataset, and workload via code generation. Proteus outperforms state-of-the-art opensource and commercial systems on both synthetic and real-world workloads without being tied to a single data model or format, all while exposing users to a single query interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.