This study attempts dynamical downscaling to improve north Indian ocean (NIO) tropical cyclone prediction from a global multimodel ensemble prediction system using weather research and forecasting (WRF) model. A total of 16 ensembles are used in the WRF simulations, these ensembles are biascorrected prior to downscaling for model climatological errors. The ensemble mean constructed from the output of all downscaled ensembles is analyzed for added value to global predictions. This mean is also compared against observation as well as high-resolution (12 km) deterministic forecast from global forecast system (GFS). Two devastating NIO tropical cyclone cases of year 2017 which were not reliably predicted by global systems have been selected for this study. The results show that downscaled predictions well simulate the intensity and spatial distribution of the rainfall and relative vorticity associated with these cyclonic storms. The wind and temperature vertical profiles during cyclone mature stage are also captured more accurately than raw prediction and high-resolution global deterministic forecast. The study affirms the adequacy of dynamical downscaling in predicting the cyclonic storms over global real-time weather forecasting system.
In an endeavor to design better forecasting tools for real-time prediction, the present work highlights the strength of the multi-model multi-physics ensemble over its operational predecessor version. The exiting operational extended range prediction system (ERPv1) combines the coupled, and its bias-corrected sea-surface temperature forced atmospheric model running at two resolutions with perturbed initial condition ensemble. This system had accomplished important goals on the sub-seasonal scale skillful forecast; however, the skill of the system is limited only up to 2 weeks. The next version of this ERP system is seamless in resolution and based on a multi-physics multi-model ensemble (MPMME). Similar to the earlier version, this system includes coupled climate forecast system version 2 (CFSv2) and atmospheric global forecast system forced with real-time bias-corrected sea-surface temperature from CFSv2. In the newer version, model integrations are performed six times in a month for real-time prediction, selecting the combination of convective and microphysics parameterization schemes. Additionally, more than 15 years hindcast are also generated for these initial conditions. The preliminary results from this system demonstrate appreciable improvements over its predecessor in predicting the large-scale low variability signal and weekly mean rainfall up to 3 weeks lead. The subdivision-wise skill analysis shows that MPMME performs better, especially in the northwest and central parts of India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.