Rockburst disasters in deep tunnels cause serious casualties and economic losses. It is a great challenge to make a warning for rockbursts in geotechnical engineering. In this work, a microseismicity-based rockburst intensity warning method is proposed that is suitable for use in deep tunnels in the initial period of microseismic (MS) monitoring. The method first involves collecting information on a sample of no more than five cases. Then, the event to be analyzed is combined with the sample events and subjected to cluster analysis. Finally, a rockburst intensity warning is generated according to the results of the cluster analysis or after a second cluster analysis. It is a comprehensive, multi-parameter rockburst intensity warning method that only needs a few rockburst cases for input which makes it suitable in the initial period of MS monitoring. The method also incorporates the novel idea of a second cluster analysis. An engineering application based on deep tunnels in the Jinping II hydropower station in Sichuan Province, China, shows that the rockburst intensity warning results based on the proposed method agree well with the actual situations in four tests carried out. The method will enrich the techniques used to warn of rockbursts based on microseismicity.
In order to explore the specimen failure characteristics during rock-burst under different gradient stress conditions, in this paper, a novel experimental technique was proposed; a common series of tests under two gradient stress paths were conducted on rock similar material specimens using the true-triaxial gradient and hydraulic-pneumatic combined test apparatus. And plaster was used as the rock similar material. In the experimental process, several rock-burst debris with area sizes of 100 mm2 were collected, and the fractal dimensions of typical detrital section crystal contours were analyzed and calculated using a scanning electron microscopy (SEM) method. The results showed that the specimens’ failure characteristics which had been induced by the two gradient stress processes were various. Also, the mesoscopic morphology of the rock-burst detrital section had effectively reflected its macroscopic failure characteristics. It was found that the fractal dimensions of the crystal contours of the specimen’s detrital section had fractal characteristics, and the box-counting dimension based on the SEM image could quantitatively describe the rock-burst failure characteristics. Furthermore, under the same magnification, the fractal dimensions of the crystal contours of the splitting failures were found to be relatively smaller than those of the shearing failures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.