The present work reports study on antimicrobial activity of pure and doped ZnO nanocomposites. Polyvinyl pyrrolidone capped Mn-and Fe-doped ZnO nanocomposites were synthesised using simple chemical co-precipitation technique. The synthesised materials were characterised using transmission electron microscope (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), Fourier transform infrared (FTIR) spectroscopy and ultraviolet (UV) visible spectroscopy. The XRD and TEM studies reveal that the synthesised ZnO nanocrystals have a hexagonal wurtzite structure with average crystalline size »7À14 nm. EDXRF and FTIR study confirmed the doping and the incorporation of impurity in ZnO nanostructure. The antimicrobial activities of nanoparticles (NPs) were studied against fungi, grampositive and gram-negative bacteria using the standard disc diffusion method. The photocatalytic activities of prepared NPs were evaluated by degradation of methylene blue dye in aqueous solution under UV light irradiation. Experimental results demonstrated that ZnO NPs doped with 10% of Mn and Fe ions showed maximum antimicrobial and photodegradation efficiency in contrast with that of the 1% loading. The enhancement in antimicrobial effect and photocatalytic degradation is attributed to the generation of reactive oxygen species due to the synergistic effects of Mn and Fe loading.
Polyvinyl pyrrolidone capped Zn1-xMnxS (0 ≤ x ≤ 0.1) nanocrystals have been synthesized using wet chemical co-precipitation method. Crystallographic and morphological characterization of the synthesized materials have been done using X-ray diffraction and transmission electron microscope. Crystallographic studies show the zinc blende crystals having average crystallite size approx. 3 nm, which is almost similar to the average particle size calculated from electron micrographs. Atomic absorption spectrometer has been used for qualitative and quantitative analysis of synthesized nanomaterials. Photo-catalytic activity has been studied using methylene blue dye as a test contaminant. Energy resolved luminescence spectra have been recorded for the detailed description of radiative and non-radiative recombination mechanisms. Photo-catalytic activity dependence on dopant concentration and luminescence quantum yield has been studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.