Diseases characterized by recurrent seizures are known as epilepsy. One of the most important mechanisms for handling it is GABA1 receptor mediated inhibition. In the same context while studying the treatment of epilepsy we observed significant effects by derivatives of sulfonamides, which prompted us to design novel derivatives by means of in silico resources with antiepileptic effects. Molecular docking approaches are routinely used in modern drug design to help understand drug–receptor interaction. This study has been performed with the help of Chemdraw Ultra 7.0, GUSAR online tool for IC50 and LD50 predictions, AutoDock Vina (Python Prescription 0.8), and PaDEL software. Results revealed that ligand-protein interaction affinity of all 10 designed molecules ranges from -5.7 Kcal/mol to -5.2 Kcal/mol, which is approximately comparable to pre-existing GABA1 inhibitor i.e. phenytoin (CID: 1775, ligand-protein interaction affinity is -6.5 Kcal/mol).
Parkinson's disease (PD) has been reported to be the most common neurodegenerative diseases all over the world. Several proteins are associated and responsible for causing PD. One such protein is α-synuclein. This chapter discusses the role of α-synuclein in PD. Various genetic and epigenetic factors, which cause structural and functional changes for α-synuclein, have been described. Several molecular mechanisms, which are involved in regulating mitochondrial and lysosomal related pathways and are linked to α-synuclein, have been discussed in detail. The knowledge gathered is further discussed in terms of using α-synuclein as a diagnostic marker for PD and as a novel therapeutic target for the same.
The glial cells along with cells of hematopoietic origin and microvascular endothelia work together to maintain the normal development and/or functioning of the nervous system. Disruption in functional coordination among these cells interrupts the efficiency of the nervous system, leading to neurodegeneration. Various proteins in the nerve cells maintain the normal signaling mechanism with these cells and throughout the body. Structural/functional disorganization of these proteins causes neurodegenerative disorders. The molecular mechanisms involved in these phenomena are yet to be explored extensively from therapeutic perspectives. Through this chapter, the authors have elaborated on less known protein Bcl-2 associated athanogene 3 (BAG3) involved in neurodegeneration. They have explored BAG3 protein and its role in neurodegeneration, protein homeostasis, its mechanism of action, its uses as a drug target, and its uses as a possible diagnostic marker of neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.