Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.
Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition.
Multiwalled carbon nanotubes (CNTs) as produced are usually entangled and not ready to be dispersed into fluids. We treated CNTs by using a concentrated nitric acid to disentangle CNT aggregates for producing CNT nanofluids. Oxygen-containing functional groups have been introduced on the CNT surfaces and more hydrophilic surfaces have been formed during this treatment, which enabled to make stable and homogeneous CNT nanofluids. Treated CNTs were successfully dispersed into polar liquids like distilled water, ethylene glycol without the need of surfactant and into nonpolar fluid like decene with oleylamine as surfactant. We measured the thermal conductivities of these nanotube suspensions using a transient hot wire apparatus. Nanotube suspensions, containing a small amount of CNTs, have substantially higher thermal conductivities than the base fluids, with the enhancement increasing with the volume fraction of CNTs. For the suspensions with the same loading, the enhanced thermal conductivity ratios are reduced with the increasing thermal conductivity of the base fluid. Comparison between the experimental data and the theoretical model indicates that the thermal conductivities of nanotube suspensions seem to be very dependent on the interfacial layer that exists between the nanotube and the liquid.
Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequencywavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm −1 . We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.
We demonstrate that the critical size cluster concept, commonly used in a nucleation theory, should be given some further attention. It has been implied that the supercritical cluster (size larger than critical) can grow via condensation. However, as we show, there is a size range, where the arrival of a vapor molecule onto a cluster surface leads to such a heating of the supercritical cluster that, due to possible evaporation, makes it unstable and, therefore, disables its condensation growth. The described phenomenon leads to substantial accumulation of certain size clusters in the system, which is clearly evident from our experimental investigation. The found suppression of the nucleus growth within the certain size range (exceeding critical) has fundamental implications for many systems where the generation of nanoparticles occur at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.