This study aims to find suitable fatigue assessment methods for welded structures (cover plates and T-joints) subjected to axial and bending loading. The Hot Spot Stress (HSS), 1-mm stress (OM), Theory of Critical Distances (TCD), Stress Averaging (SA), and Effective Notch Stress (ENS) methods are evaluated in terms of accuracy and reliability. The evaluation is based on fatigue test data extracted from the literature and carried out in this study. It is found that the SA method can be used to assess the fatigue strength of cover plate joints under axial loading with relatively good accuracy and low scatter, followed by the ENS method. The HSS, TCD, SA, and ENS methods are conservative estimation methods for T-joints under bending, while the accuracy is low. Furthermore, fatigue design curves applicable for T-joints under bending are discussed, which can be used in the TCD method and SA method.
The aim of this study is to investigate the influence of yield strength of the filler material and weld metal penetration on the load carrying capacity of butt welded joints in high-strength steels (HSS) (i.e., grade S700 and S960). These joints are manufactured with three different filler materials (under-matching, matching, and over-matching) and full and partial weld metal penetrations. The load carrying capacities of these mentioned joints are evaluated with experiments and compared with the estimations by finite element analysis (FEA), and design rules in Eurocode3 and American Welding Society Code AWS D1.1. The results show that load carrying estimations by FEA, Eurocode3, and AWS D1.1 are in good agreement with the experiments. It is observed that the global load carrying capacity and ductility of the joints are affected by weld metal penetration and yield strengths of the base and filler materials. This influence is more pronounced in joints in S960 steel welded with under-matched filler material. Furthermore, the base plate material strength can be utilized in under-matched butt welded joints provided appropriate weld metal penetration and width is assured. Moreover, it is also found that the design rules in Eurocode3 (valid for design of welded joints in steels of grade up to S700) can be extended to designing of welds in S960 steels by the use of correlation factor of one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.