This study reports a spatiotemporal characterization of toluene, benzene, ethylbenzene, and xylenes concentrations (BTEX) in an urban hot spot in Iran, specifically at an bus terminal region in Shiraz. Sampling was carried out according to NIOSH Compendium Method 1501. The inverse distance weighting (IDW) method was applied for spatial mapping. The Monte Carlo simulation technique was applied to evaluate carcinogenic and non-carcinogenic risk owing to BTEX exposure. The highest average BTEX concentrations were observed for benzene in the morning (at 7:00–9:00A.M. local time) (26.15±17.65μg/m3) and evening (at 6:00–8:00P.M. local time) (34.44±15.63μg/m3). The benzene to toluene ratios in the morning and evening were 2.02 and 3.07, respectively. The main sources of BTEX were gas stations and a municipal solid waste transfer station. The inhalation lifetime cancer risk (LTCR) for benzene in the morning and evening were 1.96×10−4 and 2.49×10−4, respectively, which exceeds the recommended value by US EPA and WHO. The hazard quotient (HQ) of all these pollutants was less than 1. The results of this work have implications for public health near ‘hot spots’ such as IKBT where large populations are exposed to carcinogenic emissions.
BackgroundAnomalous use of antibiotics and their entrance into the environment have increased concerns around the world. These compounds enter the environment through an incomplete metabolism and a considerable amount of them cannot be removed using conventional wastewater treatment. Therefore, the main objectives of this research are evaluation of the feasibility of using ultraviolet radiation (UV-A) and fortified nanoparticles of titanium dioxide (TiO2) doped with Fe+3 to remove penicillin G (PENG) from aqueous phase and determining the optimum conditions for maximum removal efficiency.ResultsThe results showed that the maximum removal rate of penicillin G occurred in acidic pH (pH = 3) in the presence of 90 mg/L Fe+3-TiO2 catalyst. In addition, an increase in pH caused a decrease in penicillin G removal rate. As the initial concentration of penicillin G increased, the removal rate of antibiotic decreased. Moreover, due to the effect of UV on catalyst activation in Fe+3-TiO2/UV-A process, a significant increase was observed in the rate of antibiotic removal. All of the variables in the process had a statistically significant effect (p < 0.001).ConclusionThe findings demonstrated that the antibiotic removal rate increased by decreasing pH and increasing the amount of catalyst and contact time. In conclusion, Fe+3-TiO2/UV-A process is an appropriate method for reducing penicillin G in polluted water resources.
Operating rooms (ORs) in hospitals are sensitive wards because patients can get infections. This work aimed to characterize the type and concentration of bioaerosols in nine ORs of an educational hospital before and after sterilization and disinfection. During 2017, fungal samples were incubated at 25–28 °C for 3–7 days and bacterial samples at 37 °C for 24–48 h. The study results showed that the concentrations of fungi before cleaning procedures (for both of disinfection and sterilization) were limited from 4.83 to 18.40 CFU/m3 and after cleaning procedures ranged from 1.90 to 8.90 CFU/m3. In addition, the concentrations of bacteria before cleaning procedures were limited 14.65–167.40 CFU/m3 and after cleaning procedures ranged from 9.50 to 38.40 CFU/m3. The difference between the mean concentrations of airborne bioaerosols before and after sterilization was significantly different than the suggested value of 30 CFU/m3 (p ≤ 0.05). The bacterial concentration was higher than the recommended value (30 CFU/m3) in 41% of the ORs. The main fungal species identified in the indoor air of ORs (before vs. after sterilization) were A. fumigatus (25.6 vs. 18.3%), A. Niger (11.6 vs. 5.8%), Penicillium spp. (5.5 vs. 3.3%), Alternaria spp. (2.8 vs. 0.7%), Fusarium spp. (9.7 vs. 3.7%), Mucor spp. (15 vs. 12.7%), Cephalotrichum spp. (1.7 vs. 0.8%), A. Flavus (24.6 vs. 18.5%), Cladosporium spp. (2.6 vs. 0.8%), and Trichoderma spp. (0 vs.0.9%). The growth of biological species even after sterilization and disinfection likely resulted from factors including poor ventilation, sweeping of OR floors, inadequate HVAC filtration, high humidity, and also lack of optimum management of infectious waste after surgery. Designing well-constructed ventilation and air-conditioning systems, replacing HEPA filters, implementing more stringent, frequent, and comprehensive disinfection procedures, and controlling temperature and humidity can help decrease bioaerosols in ORs.
World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (P<0.05). Therefore, special attention should be paid to sources of these pollutants and we need better management to decrease air pollutant concentrations through, e.g., using clean energy respect to fossil fuels, better management of urban traffic planning, and the improvement of public transport service and car sharing.
Due to adverse health effects of PAHs on humans, especially children, more extensive studies are required to identify the sources that contribute to environmental PAHs exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.