The first‐order nonnegative integer valued autoregressive process has been applied to model the counts of events in consecutive points of time. It is known that, if the innovations are assumed to follow a Poisson distribution then the marginal model is also Poisson. This model may however not be suitable for overdispersed count data. One frequent manifestation of overdispersion is that the incidence of zero counts is greater than expected from a Poisson model. In this paper, we introduce a new stationary first‐order integer valued autoregressive process with zero inflated Poisson innovations. We derive some structural properties such as the mean, variance, marginal and joint distribution functions of the process. We consider estimation of the unknown parameters by conditional or approximate full maximum likelihood. We use simulation to study the limiting marginal distribution of the process and the performance of our fitting algorithms. Finally, we demonstrate the usefulness of the proposed model by analyzing some real time series on animal health laboratory submissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.