The selective hydrogenation of 1-heptyne over a 2 wt % Pd/Al2O3 catalyst was studied in a trickle bed reactor operating in both batch recycle and continuous modes. The reaction was studied in a range of different solvents, including isopropanol, hexane, mixtures of these two solvents, and also isopropanol with small quantities of water and base (NaOH) added. It was found that the rate of reaction was fastest in hexane, owing to the higher hydrogen solubility in this solvent. However, the selectivity toward 1-heptene was higher in isopropanol, with over 95% selectivity being maintained for 120 min of the total 240 min reaction time. The addition of water or base led to an increase in reaction rate, possibly through modification of the adsorption equilibria at the catalyst surface or direct involvement in the reaction. The hydrodynamics of trickle flow upon the reaction were investigated, showing that increasing liquid flow rate led to enhancement of reaction rate, although a plateau was eventually reached at the higher flows. The higher flows led to improved catalyst wetting, liquid hold up, and mass transfer rates, thus explaining the enhanced reaction rate. The concentration profiles were fitted according to a Langmuir–Hinshelwood kinetic expression. Operation in continuous flow was demonstrated, although a long residence time was required for high conversion, leading to lower 1-heptene selectivity compared with batch recycle operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.