This paper introduces and analyzes new hyperchaotic complex Lorenz systems. These systems are 6-dimensional systems of real first order autonomous differential equations and their dynamics are very complicated and rich. In this study we extend the idea of adding state feedback control and introduce the complex periodic forces to generate hyperchaotic behaviors. The fractional Lyapunov dimension of the hyperchaotic attractors of these systems is calculated. Bifurcation analysis is used to demonstrate chaotic and hyperchaotic behaviors of our new systems. Dynamical systems where the main variables are complex appear in many important fields of physics and communications.
The aim of this paper is to introduce the new hyperchaotic complex Lü system. This system has complex nonlinear behavior which is studied and investigated in this work. Numerically the range of parameter values of the system at which hyperchaotic attractors exist is calculated. This new system has a whole circle of equilibria and three isolated fixed points, while the real counterpart has only three isolated ones. The stability analysis of the trivial fixed point is studied. Its dynamics is more rich in the sense that our system exhibits both chaotic and hyperchaotic attractors, as well as periodic and quasi-periodic solutions and solutions that approach fixed points. The nonlinear control method based on Lyapunov function is used to synchronize the hyperchaotic attractors. The control of these attractors is studied. Different forms A part of the results of this manuscript has been accepted for publication in the of hyperchaotic complex Lü systems are constructed using the state feedback controller and complex periodic forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.