This work applies a three-dimensional lattice Boltzmann method (LBM), to solve the Pennes bio-heat equation (BHE), in order to predict the temperature distribution in a spherical tissue, with blood perfusion, metabolism and magnetic nanoparticles (MNPs) heat sources, during magnetic fluid hyperthermia (MFH). So, heat dissipation of MNPs under an alternating magnetic field has been studied and effect of different factors such as induction and frequency of magnetic field and volume fraction of MNPs has been investigated. Then, effect of MNPs dispersion on temperature distribution inside tumor and its surrounding healthy tissue has been shown. Also, effect of blood perfusion, thermal conductivity of tumor, frequency and amplitude of magnetic field on temperature distribution has been explained. Results show that the LBM has a good accuracy to solve the bio-heat transfer problems.
In clinical applications of magnetic fluid hyperthermia (MFH) for cancer treatment it is very important to ensure maximum damage to the tumour while protecting the normal tissue. The resultant heating pattern by magnetic nanoparticles (MNPs) in the tumour is closely related to the dispersion of MNPs. In this study the effect of MNPs dispersion on temperature distribution in a tumour and surrounding healthy tissue, during MFH, has been investigated. Accordingly, the Pennes bio-heat equation (BHE) in a spherical tissue with Neumann curved boundary condition has been resolved. The effects of blood perfusion, metabolism heat generation as well as MNPs heat dissipation in an alternating magnetic field as source term, have been considered. To solve the Pennes BHE, the three dimensional lattice Boltzmann method (LBM) has been used. To show the accuracy of the model, simulations have been compared with analytical, experimental and numerical results, reported in the literature. Then, temperature distribution within tissue has been investigated in two cases, homogeneous distribution and Gaussian distribution of specific absorption rate (SAR). Results showed that for the studied cases, unlike homogeneous distribution, Gaussian distribution of SAR is able to raise the temperature of tumour cells above the treatment temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.