The mononuclear Au(I) complex, Au(Spy)(PPh2py) (1), has been synthesized and characterized structurally. The complex possesses the expected linear coordination geometry with a S-Au-P bond angle of 176.03(6) degrees and no evidence of aurophilic interactions between nearest neighbor Au(I) ions in the solid state. Protonation of the pendant pyridyl groups of 1 leads to the formation of the H-bonded dimer [(Au(SpyH)(PPh2py))2](PF6)2 (2), which has also been structurally characterized. A linear coordination geometry at the Au(I) ions in 2 with a S-Au-P bond angle of 173.7(2) degrees is augmented by evidence of a strong aurophilic interaction with a Au...Au distance of 2.979(1) A. The pendant pyridyl groups of 1 have also been used to bind Cu(I) by reactions with [Cu(NCMe)4](PF6) and Cu(P(p-tolyl)3)2(NO3) leading to the formation of the heterobimetallic complexes [(AuCu(mu-Spy)(mu-PPh2py))2](PF6)2 (3) and [AuCu(P(p-tolyl)3)2(mu-Spy)(mu-PPh2py)](NO3) (4), respectively. A structure determination of 3 reveals a tetranuclear complex composed of two AuCu(mu-Spy)(mu-PPh2py)+ units held together by bridging thiolate ligands. A strong metal-metal interaction is noted between the two different d10 ions with nearest Au-Cu distances averaging 2.6395 A. The S-Au-P bond angles in 3 deviate slightly from linearity due to the Au...Cu interactions, while the coordination geometries at Cu(I) are distorted tetrahedral consisting of the two pyridyl nitrogen atoms, a bridging thiolate sulfur, and the interacting Au(I) ion. While mononuclear complex 1 is only weakly emissive in the solid state and in fluid solution, complexes 2-4 show stronger photoluminescence in the solid state and rigid media at 77 K, and in fluid solution. The emission maxima for 2-4 in ambient temperature fluid solution are 470, 635, and 510 nm, respectively. A tentative assignment of the emitting state as a S(p pi)-->Au LMCT transition is made on the basis of previous studies of Au(I) thiolate phosphine complexes. Shifts of lambda em result from the influence of H bonding or Cu(I) coordination on the filled thiolate orbital energy, or on the effect of metal-metal interaction on the Au(I) acceptor orbital energy. Crystal data for Au(Spy)(PPh2py) (1): triclinic, space group P1 (No. 2), with a = 8.3975(4) A, b = 11.0237(5) A, c = 12.4105(6) A, alpha = 98.6740(10) degrees, beta = 105.3540(10) degrees, gamma = 110.9620(10) degrees, V = 995.33(8) A3, Z = 2, R1 = 3.66% (I > 2 sigma(I)), wR2 = 9.04% (I > 2 sigma(I)) for 2617 unique reflections. Crystal data for [(Au(SpyH)(PPh2py))2](PF6)2 (2): triclinic, space group P1 (No. 2), with a = 14.0284(3) A, b = 14.1093(3) A, c = 15.7027(2) A, alpha = 97.1870(10) degrees, beta = 96.5310(10) degrees, gamma = 117.1420(10) degrees, V = 2692.21(9) A3, Z = 2, R1 = 7.72% (I > 2 sigma(I)), wR2 = 15.34% (I > 2 sigma(I)) for 5596 unique reflections. Crystal data for [(AuCu(mu-Spy)(mu-PPh2py))2](PF6)2 (3): monoclinic, space group P2(1)/c (No. 14), with a = 19.6388(6) A, b = 16.3788(4) A, c = 17.2294(5) A, beta = 91.48 degrees, V = 5540.2(3) ...
This study aimed to evaluate the association of plasma MIF level and -173 G/C single nucleotide polymorphism of the MIF gene with the occurrence, severity and mortality of sepsis patients. A study was conducted in adult surgical intensive care units of Zagazig University Hospitals, Egypt on 25 patients with sepsis, 27 with severe sepsis and 28 controls. Gram-negative bacilli were the most common isolates in both severe sepsis (63.0%) and sepsis (56.0%) patients. A highly statistically significant difference was found in MIF levels between sepsis cases and controls and a statistically significant difference as regards MIF level in different genotypes of the studied groups. MIF level was significantly associated with mortality in sepsis cases. High MIF levels and MIF -173G/C gene polymorphism are powerful predictors of the severity of sepsis and its outcome. اخلاليــا هلجــرة املثبــط العامــل عــن املســؤول اجلــن يف
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.