The pull-out resistance of reinforcing elements is one of the most significant factors in increasing the bearing capacity of geosynthetic reinforced soils. In this research a new reinforcing element that includes elements (anchors) attached to ordinary geogrid for increasing the pull-out resistance of reinforcements is introduced. Reinforcement therefore consists of geogrid and anchors with cubic elements that attached to the geogrid, named (by the authors) Grid-Anchor. A total of 45 load tests were performed to investigate the bearing capacity of square footing on sand reinforced with this system. The effect of depth of the first reinforcement layer, the vertical spacing, the number and width of reinforcement layers, the distance that anchors are effective, effect of relative density, low strain stiffness and stiffness after local shear were investigated. Laboratory tests showed that when a single layer of reinforcement is used there is an optimum reinforcement embedment depth for which the bearing capacity is the greatest. There also appeared to be an optimum vertical spacing of reinforcing layers for multi-layer reinforced sand. The bearing capacity was also found to increase with increasing number of reinforcement layer, if the reinforcement were placed within a range of effective depth. The effect of soil density also is investigated. Finally the results were compared with the bearing capacity of footings on non-reinforced sand and sand reinforced with ordinary geogrid and the advantages of the Grid-Anchor were highlighted. Test results indicated that the use of Grid-Anchor to reinforce the sand increased the ultimate bearing capacity of shallow square footing by a factor of 3.0 and 1.8 times compared to that for un-reinforced soil and soil reinforced with ordinary geogrid, respectively.
The purpose of this research is to determine the capability of (and the factors which affect the performance of) an enlarged base pier in resisting uplift capacity. Experiments were conducted in the reinforced bin box of an enlarged base pier with a shaft diameter ranging from 30 to 50 mm, base diameters between 75 and 150 mm and base angles of α = 30°, α = 45°and α = 60°. Tests were conducted in both loose and dense sand packing. A failure mechanism was studied in a glass box for loose and dense sand packing. A dry sand with a unit weight of γ d = 14.80 kN/m 3 and γ d = 17. 0 kN/m 3 was achieved for loose and dense packing, respectively. Increasing the bell angle and shaft diameter would result in a decrease of the net uplift capacity and failure displacement. This is due to the reduction in the amount of the sand column above the bell that resists the uplift of the pile. Failure displacements at a constant base diameter generally increased considerably with the increase of the embedment ratio but decreased with the increment of the sand density. It is thus apparent that the shaft diameter, bell diameter and bell angle are geometric factors which, together with the embedment ratio and the sand density, should be taken into account in the design of enlarged base piers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.