An increasing trend of anthropogenic activities such as urbanization and industrialization has resulted in induction and accumulation of various kinds of heavy metals in the environment, which ultimately has disturbed the biogeochemical balance. Therefore, the present study was conducted to probe the efficiency of conocarpus (Conocarpus erectus L.) waste-derived biochar and its modified derivatives for the removal of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) from aqueous solutions. Biochar was produced at 600 °C and modified with humic acid (1:10 w/v ratio) and rock phosphate (0.5:1 w/w ratio). Additionally, produced biochar, as well as humic acid and rock phosphate-modified biochars, were subjected to ball milling separately. Equilibrium and kinetics batch experiments were conducted to investigate heavy metals adsorption on synthesized adsorbents. Adsorption isotherms and kinetics models were employed to explore the adsorption efficiency of produced materials for metals adsorption. Among all the applied adsorbents, ball-milled biochars showed comparatively higher adsorption compared to un-milled biochars. Humic acid and rock phosphate-modified milled biochar showed the highest adsorption capacity for Pb (18.85 mg g−1), while rock phosphate-modified milled biochar showed the highest adsorption capacity for Cu and Zn (24.02 mg g−1 and 187.14 mg g−1), and humic acid modified biochar adsorbed maximum Cd (30.89 mg g−1). Adsorption isotherm study confirmed Freundlich as the best-suited model (R2= 0.99), while kinetics adsorption was well described by the pseudo-second-order (R2 = 0.99). Hence, it was concluded that ball-milled biochar modified with humic acid and rock phosphate could potentially remove heavy metals from contaminated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.