Murine c-kit cardiac cells were isolated and enriched by magnetic activated cell sorting technique. c-kit cells viability and colony-forming activity were evaluated by MTT and clonogenic assay. c-kit cells were exposed to endothelial, pericyte, and cardiomyocyte induction media containing 30mM glucose for 7 days. We monitored the level of endothelial (VE-cadherin, CD31, and vWF), pericyte (NG , α-SMA, and PDGFR-β), and cardiomyocyte markers (cTnT) using flow cytometry, real-time Polymerase Chain Reaction (PCR), and Enzyme-Linked Immunosorbent Assay (ELISA) analyses. Ultrastructural changes were studied by transmission electron microscopy (TEM) in cells treated with 5-Azacytidine and 30mM glucose. Matrigel plug assay was performed to determine the angio/cardiogenic property of c-kit cells in a diabetic mouse model. Glucose of 30mM decreased c-kit cells viability and clonogenicity (P < 0.05). The transdifferentiation capacity of c-kit cells into the endothelial lineage, pericytes, and cardiomyocytes were reduced through the inhibition of related genes (P < 0.05). TEM analysis revealed cardiomyocyte differentiation rate in c-kit cells coincided with an increased intracellular lipid accumulation and reduced number of mitochondria. Similar to in vitro condition, the angiogenic capacity of c-kit cells was aborted in vivo indicated by reduced NG , α-SMA, CD31, and vWF levels. High glucose condition reduces the angio/cardiogenic capacity of cardiac c-kit cells in vitro and in vivo. SIGNIFICANCE OF THE STUDY: High glucose condition seen in diabetes mellitus could affect the regenerative potential of cardiac tissue. The current experiment showed that the exposure of murine cardiac progenitor cells (CD117 cells) to condition containing 30mM glucose could decrease the differentiation properties into endothelial cells, pericytes, and mature cardiomyocytes in vitro and in vivo. Our finding confirmed that the angiogenic/cardiogenic potential cardiac progenitor cells decrease under treatment with high glucose content as seen in the diabetic condition.
Objectives Thymoquinone is a major bioactive compound present in the black seeds of the Nigella sativa. Tendon injuries are almost 50% of all musculoskeletal injuries. The recovery of tendon after surgery has become a significant challenge in orthopedics. Design The purpose of this study was to investigate the healing effect of thymoquinone injections in 40 New Zealand rabbits tendon traumatic models. Materials and methods Tendinopathy was induced by trauma using surgical forceps on the Achilles tendon. Animals were randomly divided into 4 groups: (1) normal saline injection (control), (2) DMSO injection, (3) thymoquinone 5% w/w injection, and (4) thymoquinone 10% w/w injection. Forty-two days after surgery, biochemical and histopathological evaluations were done, and biomechanical evaluation was conducted 70 days after surgery. Results Breakpoint and yield points in treatment groups were significantly higher compared to control and DMSO groups. Hydroxyproline content in the 10% thymoquinone receiving group was higher than all groups. Edema and hemorrhage in the histopathological evaluation were significantly lower in the thymoquinone 10% and thymoquinone 5% receiving groups compared to control and DMSO groups. Collagen fibers, collagen fibers with fibrocytes, and collagen fibers with fibroblasts were significantly higher in the thymoquinone 10% and thymoquinone 5% receiving groups compared to control groups. Conclusions Thymoquinone injection in the tendon in the concentration of 10% w/w is a simple and low-cost healing agent that could enhance mechanical and collagen synthesis in traumatic tendinopathy models in rabbit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.