A two-dimensional triangular lattice solid/fluid phononic crystal (PnC) is proposed as a sensitive biosensor to detect the temperature of the Methyl Nonafluorobutyl Ether (MNE) in the range of 10–40 °C. Temperature changes in MNE represent an important issue for its various applications. Indeed, the MNE is widely used in cosmetic and beauty products for its non-toxic, non-flammable, and colorless chemical properties. For this purpose, a sensitive biosensor for temperature and physical properties of MNE appears necessary. The PnC biosensor consists of a triangular lattice of tungsten cylinders embedded in an epoxy background inside of which a line of hollow cylinders filled with MNE is introduced as a waveguide for guiding resonant modes with low group velocity. We show that the PnC biosensor provides sharp guided modes in the bandgap with high quality factors and frequencies depending on the MNE temperature with high sensitivity. The introduction of damping inside the liquid shows that the shear viscosity, compared to longitudinal, affects drastically the amplitude of the resonant peaks. However, the length of the waveguide can be adapted so as to recover the resonant peak in the presence of viscosities.
A concentric cylindrical cloak is showed here to achieve the acoustic cloaking phenomenon. The introduced structure consists of MNE layers and water in MNE substrate in the MHz frequency range. Due to avoiding the incoming acoustic waves by the shell, the object can be hidden inside the cylindrical area of any shape. In order to improve the quality of cloaking, we have optimized the desired shell by considering the manufacturing technology. We show that an optimized, acoustic cloak based on composite lattice structure can reduce the scattering of an object more than a 20-layer realization of acoustic cloak based on multilayer cylindrical structure. This design approach can substantially simplify the fabrication of cloaking shells. In this research, to study the acoustic distribution of the desired structure, finite element method (FEM) has been used to analyze the structure in two dimensions and a cloak of natural materials with isotropic properties has been designed using effective medium theory.
In this article, the all-angle and polarization insensitive negative refraction (NR) properties are investigated in a 2D diagonal array photonic crystal. The rod-type structure presents the all-angle NR for TM 2 in a bandwidth of Δω/ω c ∼20%. The all-angle NR does not hold for the hole-type structure due to the overlap of the 2nd and the 3rd bands, however, the polarization insensitive negative refraction is achieved for incidence angles of over θ in =±20°in a bandwidth of Δω/ω c =10.6% in the second band. The proposed structure has been investigated using the PWE and the FDTD methods, regarding fabrication challenges in Si technology for the central operating wavelength of λ c =1550 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.