Stoichiometric reaction of the elements at high temperature yields the ternary arsenides K(2)Zn(5)As(4) (650 °C) and Rb(2)Zn(5)As(4) (600 °C). They adopt a new structure type (Pearson symbol oC44, space group Cmcm, Z = 4; a = 11.5758(5) Å, b = 7.0476(3) Å, c = 11.6352(5) Å for K(2)Zn(5)As(4); a = 11.6649(5) Å, b = 7.0953(3) Å, c = 11.7585(5) Å for Rb(2)Zn(5)As(4)) with a complex three-dimensional framework of linked ZnAs(4) tetrahedra generating large channels that are occupied by the alkali-metal cations. An alternative and useful way of describing the structure is through the use of stellae quadrangulae each consisting of four ZnAs(4) tetrahedra capping an empty central tetrahedron. These compounds are Zintl phases; band structure calculations on K(2)Zn(5)As(4) and Rb(2)Zn(5)As(4) indicate semiconducting behavior with a direct band gap of 0.4 eV.
The ternary arsenides A(2)Zn(2)As(3) and the quaternary derivatives A(2)Ag(2)ZnAs(3) (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A(2)Zn(2)As(3) crystallize with the monoclinic Ba(2)Cd(2)Sb(3)-type structure (Pearson symbol mC28, space group C2/m, Z = 4; a = 16.212(5) Å, b = 4.275(1) Å, c = 11.955(3) Å, β = 126.271(3)° for Sr(2)Zn(2)As(3); a = 16.032(4) Å, b = 4.255(1) Å, c = 11.871(3) Å, β = 126.525(3)° for Eu(2)Zn(2)As(3)) in which CaAl(2)Si(2)-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As-As bonds to form anionic slabs [Zn(2)As(3)](4-) separated by A(2+) cations. Compounds A(2)Ag(2)ZnAs(3) crystallize with the monoclinic Yb(2)Zn(3)Ge(3)-type structure (Pearson symbol mC32, space group C2/m; a = 16.759(2) Å, b = 4.4689(5) Å, c = 12.202(1) Å, β = 127.058(1)° for Sr(2)Ag(2)ZnAs(3); a = 16.427(1) Å, b = 4.4721(3) Å, c = 11.9613(7) Å, β = 126.205(1)° for Eu(2)Ag(2)ZnAs(3)), which can be regarded as a stuffed derivative of the Ba(2)Cd(2)Sb(3)-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr(2)Zn(2)As(3) is a narrow band gap semiconductor and Sr(2)Ag(2)ZnAs(3) is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr(2)Zn(2)As(3) and 0.02 eV for Eu(2)Zn(2)As(3), the latter undergoing an apparent metal-to-semiconductor transition at 25 K.
NaGe6As6 is a ternary arsenide prepared by reaction of the elements at 650 °C. It crystallizes in a new monoclinic structure type [space group C2/m, Z = 2, a = 22.063(2), b = 3.8032(4), c = 7.2020(8) Å, β = 92.7437(15)°] that can be considered to be derived by inserting guest Na atoms between [Ge6As6] layers identical to those found in the layered binary arsenide GeAs. An unusual feature in both structures is the presence of ethane-like Ge2As6 units in staggered conformation, with Ge–Ge dumbbells oriented either parallel or perpendicular to the layers. Electronic band structure calculations have shown that the electron excess in NaGe6As6 is accommodated by raising the Fermi level across a 0.6 eV band gap in semiconducting GeAs so that it cuts the bottom of the conduction band, resulting in an n-doped semiconductor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.