The impact of changes in the geomagnetic field on the human body remains the subject of studies across the world, yet there is no consensus. Current studies are observing effects that require further work by researchers in order to find out the mechanisms that would allow a proper assessment of the correlations between the Earth‘s magnetic field variations and changes in human organisms. The main purpose of this study was to investigate possible correlations between the strength of time-varying aspects of the local Earth’s magnetic field and incidence of myocardial infarctions. Study participants included 435 males and 268 females who had diagnosis of myocardial infarction during the period of 1 January 2016 to 31 December 2016 and attended the Department of Cardiology at the Hospital of Lithuanian University of Health Sciences (LUHS), Kauno klinikos. Time varying magnetic field data was collected at the magnetometer site located in Lithuania. After mathematical analysis, the results support the hypothesis that the Earth’s magnetic field has a relationship between the number of acute myocardial infarction with ST segment elevation (STEMI) cases per week and the average weekly geomagnetic field strength in different frequency ranges. Correlations varied in different age groups as well as in males and females, which may indicate diverse organism sensitivity to the Earth’s magnetic field.
Abstract.Objectives: Acute coronary syndrome as an acute oxygenated blood deprivation to the heart muscle due to atherosclerotic plaque rupture in the coronary artery followed by thrombosis is possibly associated with changes in the Earth's local time varying magnetic field as they strongly influence hormonal and other regulatory systems' activity. This study analyses the correlation between prevalence of the acute coronary syndrome and the changes in the local time varying aspects of the magnetic field. Methods: Seven-hundred patients admitted to Cardiology Department of Hospital of Lithuanian University of Health Sciences Kaunas Clinics within 2016 due to acute coronary syndrome were retrospectively included into the study. The number of cases per week was compared with the weekly changes of the local Earth magnetic field. The one-year period was divided into two periods: the first-half of the year (weeks 1 to 26) and the second-half of the year (weeks 27 to 52) and more detailed analyses were performed accordingly to the significance of the left main artery lesion. Mean power of local magnetic field fluctuations in Lithuania, measured in pT2 in five different frequency ranges where overlaps between the Schumann resonance and EEG frequency ranges (named as SDelta (0-3.5 Hz), STheta (3.5-7 Hz), SAlpha (7-15 Hz), SBeta (15-32 Hz) and SGamma (32-66 Hz) to distinguish them from the EEG bands). Results: Statistically significant weak and moderate correlations between weekly prevalence of acute coronary syndrome admissions and the magnetic field intensities changes were found. Higher intensities in the SBeta and SGamma ranges were associated with a higher number of admissions throughout the year in females and the SGamma range was associated with higher number of admission only during the second-half of the year in males. A higher intensity magnetic field in SDelta, STheta, SAlpha and SBeta ranges was associated with a higher admissions number due to left main artery lesions in males, while a higher intensity in the SGamma range was associated with higher number of admissions due to left main artery lesions in females through the year. Conclusion: Significant correlation between acute coronary syndrome and changes in the local Earth time varying magnetic field intensities was found. Some frequency ranges are associated with an episode of an acute coronary syndrome. Left main artery lesions significantly correlated with magnetic field changes in most of the frequency ranges in males while only one of the frequency ranges in females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.